Impact of Quantized Side Information on Subchannel Scheduling for Cellular V2X

Luis F. Abanto-Leon

Co-authors: Arie Koppelaar Chetan B. Math Sonia Heemstra de Groot

Department of Electrical Engineering Eindhoven University of Technology

IEEE 87th Vehicular Technology Conference (VTC 2018 - Spring) International Workshop on Connected, Automated and Autonomous Vehicles

	Identified Problems	Proposed Solution	Conclusions
Contents			2/ 29

1 Background

- 2 Identified Problems
- **3** Proposed Solution

4 Simulations

5 Conclusions

Luis F. Abanto-Leon

Figure 1: Connected world

Luis F. Abanto-Leon

Eindhoven University of Technology

- 3GPP¹ proposed in Release 14, two novel schemes to support sidelink vehicular communications
 - C-V2X mode-3 (centralized)
 - C-V2X² mode-4 (distributed)

¹3GPP: The 3rd Generation Partnership Project ²C-V2X: Cellular Vehicle-to-Everything ³D2D: Device-to-Device communications

Luis F. Abanto-Leon

Impact of Quantized Side Information on Subchannel Scheduling for Cellular V2X

Eindhoven University of Technology

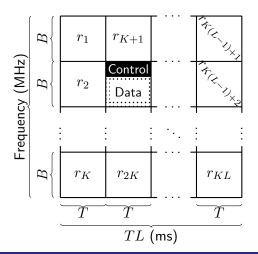
- 3GPP¹ proposed in Release 14, two novel schemes to support sidelink vehicular communications
 - C-V2X mode-3 (centralized)
 - C-V2X² mode-4 (distributed)
- C-V2X modes are based on LTE-D2D³ technology, where similar communication modalities were proposed.

¹3GPP: The 3rd Generation Partnership Project ²C-V2X: Cellular Vehicle-to-Everything ³D2D: Device-to-Device communications

Luis F. Abanto-Leon

Eindhoven University of Technology

- 3GPP¹ proposed in Release 14, two novel schemes to support sidelink vehicular communications
 - C-V2X mode-3 (centralized)
 - C-V2X² mode-4 (distributed)
- C-V2X modes are based on LTE-D2D³ technology, where similar communication modalities were proposed.
- However, in LTE-D2D (introduced for public safety) the ultimate objective is to reduce energy consumption (at the expense of compromising latency).


¹3GPP: The 3rd Generation Partnership Project ²C-V2X: Cellular Vehicle-to-Everything ³D2D: Device-to-Device communications

Luis F. Abanto-Leon

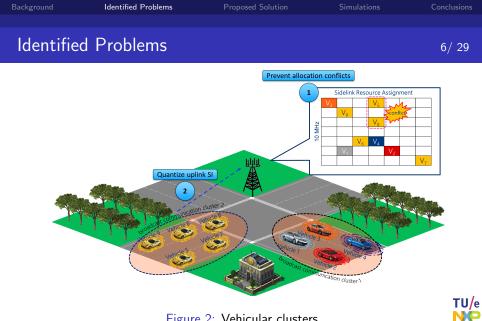
Sidelink Subchannels

4/29

- T: duration of a subframe
- K: number of subchannels per subframe
- L: total number of subframes for allocation

Eindhoven University of Technology

 B: subchannel bandwidth


Luis F. Abanto-Leon

 Besides uplink and downlink (Uu), vehicles can also communicate via sidelink (PC5), which supports direct communications between vehicles.

Luis F. Abanto-Leon

Figure 2: Vehicular clusters

Luis F. Abanto-Leon

Eindhoven University of Technology

The subchannel allocation problem can be expressed as:

$$\max \mathbf{c}^{T} \mathbf{x}$$
(1a)
subject to $\left[\frac{\mathbf{I}_{N \times N} \otimes \mathbf{1}_{1 \times N}}{\mathbf{1}_{1 \times N} \otimes \mathbf{I}_{N \times N}} \right] \otimes \mathbf{1}_{1 \times K} \mathbf{x} = \mathbf{1}$ (1b)

<u>Note:</u> For completeness, we have assumed that the number of vehicles is equal to the number of subframes, i.e. N = L

This problem cannot be approached by known matching algorithms. So we proceed as follows

TU/e

	Identified Problems	Proposed Solution	Conclusions
Propert	ies		8/ 29

Property 1 (Product of two tensor products) Let $\mathbf{X} \in \mathbb{R}^{m \times n}$, $\mathbf{Y} \in \mathbb{R}^{r \times s}$, $\mathbf{W} \in \mathbb{R}^{n \times p}$, and $\mathbf{Z} \in \mathbb{R}^{s \times t}$, then

 $\mathbf{X}\mathbf{Y} \otimes \mathbf{W}\mathbf{Z} = (\mathbf{X} \otimes \mathbf{W})(\mathbf{Y} \otimes \mathbf{Z}) \in \mathbb{R}^{mr \times pt}$

Property 2 (Pseudo-inverse of a tensor product) Let $\mathbf{X} \in \mathbb{R}^{m \times n}$ and $\mathbf{Y} \in \mathbb{R}^{r \times s}$, then

 $(\mathbf{X} \otimes \mathbf{Y})^{\dagger} = \mathbf{X}^{\dagger} \otimes \mathbf{Y}^{\dagger} \in \mathbb{R}^{ns imes mr}$

Luis F. Abanto-Leon

Impact of Quantized Side Information on Subchannel Scheduling for Cellular V2X

Eindhoven University of Technology

Resultant Optimization Problem

TU/e

Transformation

$$\mathbf{d} = \lim_{\beta \to \infty} \frac{1}{\beta} \overset{\circ}{\log} \left\{ (\mathbf{I}_{M \times M} \otimes \mathbf{1}_{1 \times K}) \mathrm{e}^{\circ \beta \mathbf{c}} \right\}$$

 $\log^{\circ}{\{\cdot\}}$: Element-wise natural logarithm. $e^{\circ\{\cdot\}}$ Hadamard exponential.

Eindhoven University of Technology

Luis F. Abanto-Leon

Original Problem

$$\max \mathbf{c}^T \mathbf{x}, \text{ subject to } \left[\frac{\mathbf{I}_{N \times N} \otimes \mathbf{1}_{1 \times N}}{\mathbf{1}_{1 \times N} \otimes \mathbf{I}_{N \times N}} \right] \otimes \mathbf{1}_{1 \times K} \mathbf{x} = \mathbf{1}$$

Resultant Problemmax
$$\mathbf{d}^T \mathbf{y}$$
,subject to $\begin{bmatrix} \mathbf{I}_{N \times N} \otimes \mathbf{1}_{1 \times N} \\ \mathbf{1}_{1 \times N} \otimes \mathbf{I}_{N \times N} \end{bmatrix} \mathbf{y} = \mathbf{1}.$

where $\mathbf{d} = (\mathbf{I}_{M \times M} \otimes \mathbf{1}_{1 \times K}) diag(\mathbf{c}) \mathbf{x}$ and $\mathbf{y} = (\mathbf{I}_{M \times M} \otimes \mathbf{1}_{1 \times K}) \mathbf{x}$ Dimensionality reduction: $\rightarrow |\mathbf{x}| = MK \quad \rightarrow |\mathbf{y}| = M$. The resultant method are near the approached through the

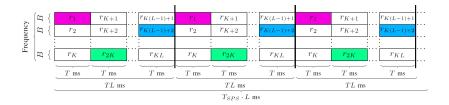
The resultant problem can now be approached through the Kuhn-Munkres Algorithm.

Luis F. Abanto-Leon

Impact of Quantized Side Information on Subchannel Scheduling for Cellular V2X

Eindhoven University of Technology

Quantization of Uplink Side Information


- Transmission of side information via uplink in order for the eNodeBs to perform scheduling is crucial in the proposed approach.
- Thus, the impact of quantization on the uplink side information has to be assessed.
- A suitable degree of granularity should not degrade severely the optimal scheduling.

Impact of Quantized Side Information on Subchannel Scheduling for Cellular V2X

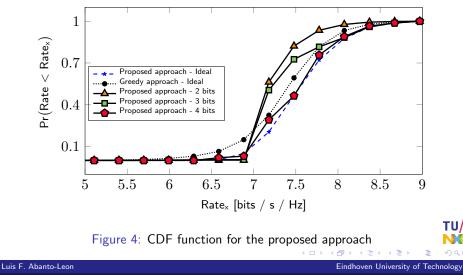
Eindhoven University of Technology

Simulation Scenario

Figure 3: Semi-Persistent Subchannel Reservation

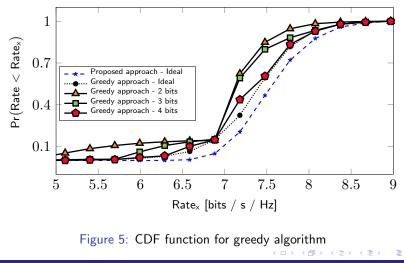
TU/e NC Eindhoven University of Technology

12/29


Luis F. Abanto-Leon

Consider the following setting:

- Subchannel length: 1 ms
- Subchannels width: 1.26 MHz (7 RBs)
- CAM message rate: 10 Hz
- Scheduling solutions:
 - Proposed approach (graph-based)
 - Greedy approach
 - Random approach
- Levels of granularity:
 - 4 bits
 - 3 bits
 - 2 bits


TU/e

CDF of Proposed Approach

TU/e

CDF of Greedy Approach

Luis F. Abanto-Leon

Eindhoven University of Technology

Scenario: System Performance Using 3 Bits

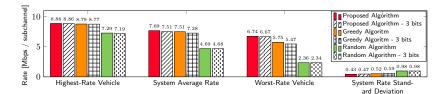


Figure 6: Vehicles data rate: performance comparison between fine-grained vs 3-bit quantization (N = 100)

Luis F. Abanto-Leon

Scenario: System Performance Using 2 Bits

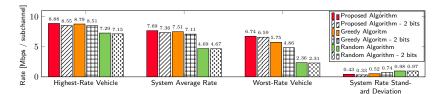
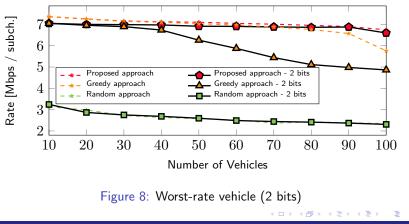


Figure 7: Vehicles data rate: performance comparison between fine-grained vs 2-bit quantization (N = 100)

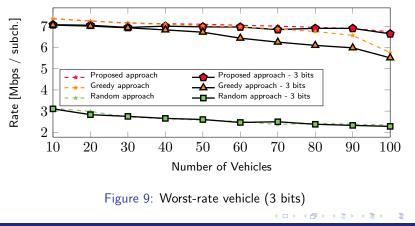


Luis F. Abanto-Leon

Scenario: Least-Favored Vehicle (2 bits)

18/29

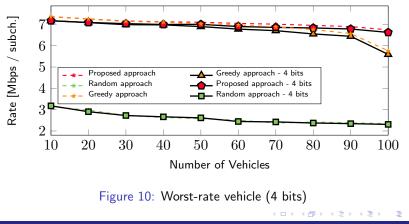
TU/e


Luis F. Abanto-Leon

Eindhoven University of Technology

Scenario: Least-Favored Vehicle (3 bits)

TU/e


Luis F. Abanto-Leon

Eindhoven University of Technology

Scenario: Least-Favored Vehicle (4 bits)

TU/e

Luis F. Abanto-Leon

Eindhoven University of Technology

- We presented a subchannel assignment approach for V2V mode-3 based on weighted bipartite graph matching considering constraints to prevent intra-cluster conflicts.
- The proposed approach is compared against greedy and random algorithms.
- The three approaches were assessed using both fine-grained and quantized SINR values.
- When either the proposed approach or greedy approach are used, 3 quantization bits are enough in order not to deviate notoriously from the ideal fine-grained curve performance.

ΓU/e

	Identified Problems	Proposed Solution	Conclusions
Questions			22/29

Luis F. Abanto-Leon

Impact of Quantized Side Information on Subchannel Scheduling for Cellular V2X

ъ Eindhoven University of Technology

æ

ъ

Subchannel Structure

Assuming a 10 MHz ITS (Intelligent Transportation Systems) channel, up to 7 subchannels per subframe can be obtained. Thus,

- B: 1.26 MHz
- T: 1 ms (2 slots of 0.5 ms each)
- Control: 2 RBs^4 per slot \leftarrow 24 subcarriers
- Data: 5 RBs per slot \leftarrow 60 subcarriers

Subchannel

A subchannel of 7 RBs is capable of transporting a basic CAM message with a payload of 200 bytes.

⁴RB: A resource block consits of 12 subcarriers

Luis F. Abanto-Leon

Eindhoven University of Technology

r U/e

 $\max \mathbf{c}^T \mathbf{x}$

Because $\mathbf{x} \in \mathbb{B}^{MK}$, then the objective function can be recast as

$$\mathbf{c}^T \mathbf{x} \equiv \mathbf{x}^T diag(\mathbf{c}) \mathbf{x}$$

without affecting optimality. Note that $M = N^2$.

Luis F. Abanto-Leon

 $\max \, \mathbf{c}^T \mathbf{x}$

For any vehicle v_i ,

$$x_{ij}x_{ik} = 0, \ r_j, r_k \in \mathcal{R}_{\alpha}.$$

Moreover,

$$c_{ij}x_{ij}x_{ik} = 0, \ r_j, r_k \in \mathcal{R}_{\alpha}.$$

In general, for N vehicles

$$\mathbf{x}^{T} \big(\mathbf{I}_{M \times M} \otimes [\mathbf{1}_{K \times K} - \mathbf{I}_{K \times K}] \big) diag(\mathbf{c}) \mathbf{x} = 0.$$

Luis F. Abanto-Leon

Impact of Quantized Side Information on Subchannel Scheduling for Cellular V2X

Eindhoven University of Technology

 $\max \, \mathbf{c}^T \mathbf{x}$

As long as $\mathbf{x}^T (\mathbf{I}_{M \times M} \otimes [\mathbf{1}_{K \times K} - \mathbf{I}_{K \times K}]) diag(\mathbf{c}) \mathbf{x} = 0$ holds, conflicts will be prevented.

We can aggregate this condition to the objective function. Hence,

$$\mathbf{c}^T \mathbf{x} = \mathbf{x}^T diag(\mathbf{c}) \mathbf{x} + \mathbf{x}^T \big(\mathbf{I}_{M \times M} \otimes [\mathbf{1}_{K \times K} - \mathbf{I}_{K \times K}] \big) diag(\mathbf{c}) \mathbf{x}$$

Further manipulation leads to

$$\mathbf{c}^T \mathbf{x} = \mathbf{x}^T (\mathbf{I}_{M \times M} \otimes \mathbf{1}_{K \times K}) diag(\mathbf{c}) \mathbf{x}$$

Luis F. Abanto-Leon

Impact of Quantized Side Information on Subchannel Scheduling for Cellular V2X

Eindhoven University of Technology

С

 $\max \mathbf{c}^T \mathbf{x}$

Property 1 (Product of two tensor products) Let $\mathbf{X} \in \mathbb{R}^{m \times n}$, $\mathbf{Y} \in \mathbb{R}^{r \times s}$, $\mathbf{W} \in \mathbb{R}^{n \times p}$, and $\mathbf{Z} \in \mathbb{R}^{s \times t}$, then

 $\mathbf{X}\mathbf{Y} \otimes \mathbf{W}\mathbf{Z} = (\mathbf{X} \otimes \mathbf{W})(\mathbf{Y} \otimes \mathbf{Z}) \in \mathbb{R}^{mr \times pt}$

$$T_{\mathbf{X}} = \mathbf{x}^{T} (\mathbf{I}_{M \times M} \otimes \mathbf{1}_{K \times K}) diag(\mathbf{c}) \mathbf{x}$$
$$= \mathbf{x}^{T} (\mathbf{I}_{M \times M} \mathbf{I}_{M \times M} \otimes \mathbf{1}_{K \times 1} \mathbf{1}_{1 \times K}) diag(\mathbf{c}) \mathbf{x}$$
$$= \mathbf{x}^{T} (\mathbf{I}_{M \times M} \otimes \mathbf{1}_{K \times 1}) (\mathbf{I}_{M \times M} \otimes \mathbf{1}_{1 \times K}) diag(\mathbf{c}) \mathbf{x}$$

Eindhoven University of Technology

d

TU/e

Impact of Quantized Side Information on Subchannel Scheduling for Cellular V2X

γT

Constraints

subject to
$$\begin{bmatrix} \mathbf{I}_{N \times N} \otimes \mathbf{1}_{1 \times N} \\ \hline \mathbf{1}_{1 \times N} \otimes \mathbf{I}_{N \times N} \end{bmatrix} \otimes \mathbf{1}_{1 \times K} \mathbf{x} = \mathbf{1}$$

Property 2 (Pseudo-inverse of a tensor product) Let $\mathbf{X} \in \mathbb{R}^{m \times n}$ and $\mathbf{Y} \in \mathbb{R}^{r \times s}$, then

$$(\mathbf{X} \otimes \mathbf{Y})^{\dagger} = \mathbf{X}^{\dagger} \otimes \mathbf{Y}^{\dagger} \in \mathbb{R}^{ns \times mr}$$

Luis F. Abanto-Leon

Impact of Quantized Side Information on Subchannel Scheduling for Cellular V2X

Eindhoven University of Technology

subject to
$$\left[\frac{\mathbf{I}_{N \times N} \otimes \mathbf{1}_{1 \times N}}{\mathbf{1}_{1 \times N} \otimes \mathbf{I}_{N \times N}} \right] \otimes \mathbf{1}_{1 \times K} \mathbf{x} = \mathbf{1}$$

$$\left(\left[\frac{\mathbf{I}_{N\times N}\otimes\mathbf{1}_{1\times N}}{\mathbf{1}_{1\times N}\otimes\mathbf{I}_{N\times N}}\right]\otimes\mathbf{1}_{1\times K}\right)\left(\mathbf{I}_{M\times M}\otimes\mathbf{1}_{1\times K}^{\dagger}\right)\mathbf{y}=\mathbf{1}$$
$$=\left(\left[\frac{\mathbf{I}_{N\times N}\otimes\mathbf{1}_{1\times N}}{\mathbf{1}_{1\times N}\otimes\mathbf{I}_{N\times N}}\right]\mathbf{I}_{M\times M}\right)\otimes\underbrace{\left(\mathbf{1}_{1\times K}\mathbf{1}_{1\times K}^{\dagger}\right)}_{\mathbf{1}}\mathbf{y}=\mathbf{1}$$
$$=\left[\frac{\mathbf{I}_{N\times N}\otimes\mathbf{1}_{1\times N}}{\mathbf{1}_{1\times N}\otimes\mathbf{I}_{N\times N}}\right]\mathbf{y}=\mathbf{1}$$

Luis F. Abanto-Leon

Impact of Quantized Side Information on Subchannel Scheduling for Cellular V2X

Eindhoven University of Technology