TDOA-based Localization via Stochastic Gradient Descent Variants

Luis F. Abanto-Leon

Co-authors: Arie Koppelaar Sonia Heemstra de Groot

Department of Electrical Engineering Eindhoven University of Technology

IEEE 88th Vehicular Technology Conference (VTC 2018-Fall)

《曰》 《聞》 《臣》 《臣》 三臣

Background 00	TDOA Model 000	Problem Formulation	Proposed Algorithm 0	Simulation Results	Conclusions 00
Conten	its				2/ 16

- 1 Background
- 2 TDOA Model
- **3** Problem Formulation
- 4 Proposed Algorithm
- 5 Simulation Results
- 6 Conclusions

Luis F. Abanto-Leon

Background ●0	TDOA Model 000	Problem Formulation	Proposed Algorithm 0	Simulation Results	Conclusions 00
Backg	round				3/ 16

 Source localization is of pivotal importance in several areas such as WSN and Internet of Things (IoT).

Luis F. Abanto-Leon

Background ●0	TDOA Model 000	Problem Formulation	Proposed Algorithm 0	Simulation Results	Conclusions 00
Backg	round				3/ 16

- Source localization is of pivotal importance in several areas such as WSN and Internet of Things (IoT).
- Location information can be used for a variety of purposes,
 e.g. surveillance, monitoring, tracking, etc.

Luis F. Abanto-Leon

Background ●0	TDOA Model 000	Problem Formulation	Proposed Algorithm 0	Simulation Results	Conclusions 00
Backg	round				3/ 16

- Source localization is of pivotal importance in several areas such as WSN and Internet of Things (IoT).
- Location information can be used for a variety of purposes,
 e.g. surveillance, monitoring, tracking, etc.
- TDOA is one of the well-known localization approaches, where a source broadcasts a signal and a number of receivers record the arriving time of the transmitted signal.

Background ●0	TDOA Model 000	Problem Formulation	Proposed Algorithm 0	Simulation Results	Conclusions
Backg	round				3/ 16

- Source localization is of pivotal importance in several areas such as WSN and Internet of Things (IoT).
- Location information can be used for a variety of purposes,
 e.g. surveillance, monitoring, tracking, etc.
- TDOA is one of the well-known localization approaches, where a source broadcasts a signal and a number of receivers record the arriving time of the transmitted signal.
- By means of computing the time difference from various receivers, the source location can be estimated.

Background ○●	TDOA Model 000	Problem Formulation	Proposed Algorithm 0	Simulation Results	Conclusions 00
Backg	round				4/ 16

On the other hand, in the recent few years novel optimization algorithms have emerged for (i) processing big data and for (ii) training deep neural networks.

Luis F. Abanto-Leon

Background ○●	TDOA Model 000	Problem Formulation	Proposed Algorithm 0	Simulation Results	Conclusions 00
Backg	round				4/ 16

- On the other hand, in the recent few years novel optimization algorithms have emerged for (i) processing big data and for (ii) training deep neural networks.
- Most of these techniques are enhanced variants of the classical stochastic gradient descent (SGD) but with additional features that promote faster convergence.

Eindhoven University of Technology

Background ○●	TDOA Model 000	Problem Formulation	Proposed Algorithm 0	Simulation Results	Conclusions 00
Backg	round				4/ 16

- On the other hand, in the recent few years novel optimization algorithms have emerged for (i) processing big data and for (ii) training deep neural networks.
- Most of these techniques are enhanced variants of the classical stochastic gradient descent (SGD) but with additional features that promote faster convergence.
- We propose an optimization procedure called RMSProp+AF, which is based on RMSProp algorithm but incorporating adaptation of the decaying factor.

Background ○●	TDOA Model 000	Problem Formulation	Proposed Algorithm 0	Simulation Results	Conclusions 00
Backg	round				4/ 16

- On the other hand, in the recent few years novel optimization algorithms have emerged for (i) processing big data and for (ii) training deep neural networks.
- Most of these techniques are enhanced variants of the classical stochastic gradient descent (SGD) but with additional features that promote faster convergence.
- We propose an optimization procedure called RMSProp+AF, which is based on RMSProp algorithm but incorporating adaptation of the decaying factor.
- We show through simulations that all of these techniques can also be successfully applied to source localization.

Background 00	TDOA Model ●00	Problem Formulation	Proposed Algorithm 0	Simulation Results	Conclusions
TDOA	Model				5/ 16

• Consider a system consisting of a set of receivers $\mathcal{R} = \{r_1, r_2, \dots, r_N\}$

Eindhoven University of Technology

Luis F. Abanto-Leon

Background 00	TDOA Model ●00	Problem Formulation	Proposed Algorithm 0	Simulation Results	Conclusions 00
TDOA	Model				5/ 16

- Consider a system consisting of a set of receivers $\mathcal{R} = \{r_1, r_2, \dots, r_N\}$
- The receivers are located at known positions $\tilde{\mathbf{p}}_i = [\tilde{x}_i, \tilde{y}_i]^T$, $i = 1, 2, \cdots, N$.

Luis F. Abanto-Leon

Background 00	TDOA Model ●00	Problem Formulation	Proposed Algorithm 0	Simulation Results	Conclusions 00
TDOA	Model				5/16

- Consider a system consisting of a set of receivers $\mathcal{R} = \{r_1, r_2, \dots, r_N\}$
- The receivers are located at known positions $\tilde{\mathbf{p}}_i = [\tilde{x}_i, \tilde{y}_i]^T$, $i = 1, 2, \cdots, N$.
- There is a single transmitter at the unknown location p, which is actively broadcasting beacon signals s(t) that are not necessarily known by the receivers.

Background 00	TDOA Model 0●0	Problem Formulation	Proposed Algorithm 0	Simulation Results	Conclusions 00
TDOA	Model				6/ 16

• Let $z_i(t) = h_i \cdot s(t - \tau_i) + \eta_i(t)$ denote the received signal at receiver $r_i \in \mathcal{R}$.

Eindhoven University of Technology

Luis F. Abanto-Leon

Background 00	TDOA Model 0●0	Problem Formulation	Proposed Algorithm 0	Simulation Results	Conclusions 00
TDOA	Model				6/ 16

- Let $z_i(t) = h_i \cdot s(t \tau_i) + \eta_i(t)$ denote the received signal at receiver $r_i \in \mathcal{R}$.
- τ_i represents the time of arrival at the receiver r_i .

Luis F. Abanto-Leon

Background 00	TDOA Model 0●0	Problem Formulation	Proposed Algorithm 0	Simulation Results	Conclusions 00
TDOA	Model				6/16

- Let $z_i(t) = h_i \cdot s(t \tau_i) + \eta_i(t)$ denote the received signal at receiver $r_i \in \mathcal{R}$.
- τ_i represents the time of arrival at the receiver r_i .
- The channel gain at receiver r_i is denoted by h_i whereas η_i represents Gaussian noise.

Luis F Abanto-Leon

Background 00	TDOA Model 0●0	Problem Formulation	Proposed Algorithm 0	Simulation Results	Conclusions 00
TDOA	Model				6/ 16

- Let $z_i(t) = h_i \cdot s(t \tau_i) + \eta_i(t)$ denote the received signal at receiver $r_i \in \mathcal{R}$.
- τ_i represents the time of arrival at the receiver r_i .
- The channel gain at receiver r_i is denoted by h_i whereas η_i represents Gaussian noise.
- When *s*(*t*) is unknown by the receivers, the incognito signal *s*(*t*) can be removed by means of correlation analysis.

Background 00	TDOA Model 0●0	Problem Formulation	Proposed Algorithm 0	Simulation Results	Conclusions 00
TDOA	Model				6/ 16

- Let $z_i(t) = h_i \cdot s(t \tau_i) + \eta_i(t)$ denote the received signal at receiver $r_i \in \mathcal{R}$.
- τ_i represents the time of arrival at the receiver r_i .
- The channel gain at receiver r_i is denoted by h_i whereas η_i represents Gaussian noise.
- When s(t) is unknown by the receivers, the incognito signal s(t) can be removed by means of correlation analysis.
- Thus, the TDOA measurements $\Delta \tau_{ij}$ are indirectly estimated by computing the normalized cross-correlation (NCC) between every pair of signals.

Conclusions

Normalized Cross-Correlation (NCC)

7/16

$$\begin{aligned} \Delta \hat{\tau}_{ij} &= \arg \max_{\Delta \tau_{ij}} \frac{\sum_{u} \bar{z}_{i}(u) \bar{z}_{j}(u - \Delta \tau_{ij})}{\sqrt{\sum_{u} \bar{z}_{i}^{2}(u)} \sqrt{\sum_{u} \bar{z}_{j}^{2}(u)}} \\ &= \arg \max_{\Delta \tau_{ij}} \frac{\sum_{u} \left(s(u - \tau_{i}) + \frac{h_{i}^{*}}{|h_{i}|^{2}} \eta_{i}(t) \right) \left(s(u - \Delta \tau_{ij} - \tau_{j}) + \frac{h_{j}^{*}}{|h_{j}|^{2}} \eta_{j}(t) \right)}{\sqrt{\sum_{u} \left(s(u - \tau_{i}) + \frac{h_{i}^{*}}{|h_{i}|^{2}} \eta_{i}(t) \right)^{2}} \sqrt{\sum_{u} \left(s(u - \tau_{j}) + \frac{h_{j}^{*}}{|h_{j}|^{2}} \eta_{j}(t) \right)^{2}} \\ &= (\tau_{i} - \tau_{j}) + \pi_{ij} \end{aligned}$$
(1)

✓ □ ▷ < ∃ ▷ < ∃ ▷ < ∃ ▷ < ∃ ▷ < ∃ ▷ < ∃ ▷
 Eindhoven University of Technology

Luis F. Abanto-Leon

Background	TDOA Model	Problem Formulation	Proposed Algorithm	Simulation Results	Conclusions
00	000	●00	O		00

Problem Formulation

Because the underlying location estimation problem requires using distances, all TDOAs $\Delta \hat{\tau}_{ij}$ will be converted from time to range differences as shown in (2).

$$\Delta \hat{d}_{ij} = c \cdot \Delta \hat{\tau}_{ij}$$

$$= c \cdot (\tau_i - \tau_j) + c \cdot \pi_{ij}$$

$$= d_i - d_j + \epsilon_{ij}$$

$$= \|\mathbf{p} - \tilde{\mathbf{p}}_i\|_2 - \|\mathbf{p} - \tilde{\mathbf{p}}_j\|_2 + \epsilon_{ij}$$

$$= g(\mathbf{p}, \tilde{\mathbf{p}}_i, \tilde{\mathbf{p}}_j) + \epsilon_{ij}$$
(2)

Equivalently,

$$\Delta \hat{d}_m = g(\mathbf{p}, \tilde{\mathbf{p}}_i, \tilde{\mathbf{p}}_j) + \epsilon_m \tag{3}$$

TDOA-based Localization via Stochastic Gradient Descent Variants

Eindhoven University of Technology

8/16

'U/e

Background 00	TDOA Model 000	Problem Formulation ○●○	Proposed Algorithm 0	Simulation Results	Conclusions

Problem Formulation

Given the observed measurements $\Delta \hat{\mathbf{d}} = [\Delta \hat{d}_{1,2}, \Delta \hat{d}_{1,3}, \cdots, \Delta \hat{d}_{N-1,N}]^T$, the objective is to estimate with the least uncertainty—the true position \mathbf{p} of the transmitter. This can be formulated as maximizing the likelihood function

$$p(\mathbf{\Delta}\hat{\mathbf{d}} \mid \mathbf{p}) = \frac{1}{\sqrt{\det(2\pi\mathbf{C})}} \exp\left(-\frac{1}{2}(\mathbf{\Delta}\hat{\mathbf{d}} - \mathbf{g})^T \mathbf{C}^{-1}(\mathbf{\Delta}\hat{\mathbf{d}} - \mathbf{g})\right)$$
(4)

where

$$\mathbf{g} = \begin{bmatrix} \|\mathbf{p} - \tilde{\mathbf{p}}_1\|_2 - \|\mathbf{p} - \tilde{\mathbf{p}}_2\|_2 \\ \|\mathbf{p} - \tilde{\mathbf{p}}_1\|_2 - \|\mathbf{p} - \tilde{\mathbf{p}}_3\|_2 \\ \vdots \\ \|\mathbf{p} - \tilde{\mathbf{p}}_{N-1}\|_2 - \|\mathbf{p} - \tilde{\mathbf{p}}_N\|_2 \end{bmatrix}.$$
(5)

Luis F. Abanto-Leon

TDOA-based Localization via Stochastic Gradient Descent Variants

Eindhoven University of Technology

Background 00	TDOA Model 000	Problem Formulation	Proposed Algorithm 0	Simulation Results	Conclusions 00

Problem Formulation

Maximizing (4) is equivalent to minimizing (5)

$$\hat{\mathbf{p}} = \arg\min_{\mathbf{p}} \underbrace{(\boldsymbol{\Delta}\hat{\mathbf{d}} - \mathbf{g})^T \mathbf{C}^{-1} (\boldsymbol{\Delta}\hat{\mathbf{d}} - \mathbf{g})}_{J: \text{ cost function}}.$$
(6)

We determine \mathbf{p} iteratively using a gradient approach

$$\hat{\mathbf{p}}^{(k+1)} = \hat{\mathbf{p}}^{(k)} - \mu \nabla_{\mathbf{p}}^{(k)} J, \tag{7}$$

$$\nabla_{\mathbf{p}}^{(k)} J = -2\epsilon^{(k)} \begin{bmatrix} \frac{\mathbf{p}^{(k)} - \tilde{\mathbf{p}}_1}{\|\mathbf{p}^{(k)} - \tilde{\mathbf{p}}_1\|_2} - \frac{\mathbf{p}^{(k)} - \tilde{\mathbf{p}}_2}{\|\mathbf{p}^{(k)} - \tilde{\mathbf{p}}_2\|_2} \\ \frac{\mathbf{p}^{(k)} - \tilde{\mathbf{p}}_1}{\|\mathbf{p}^{(k)} - \tilde{\mathbf{p}}_1\|_2} - \frac{\mathbf{p}^{(k)} - \tilde{\mathbf{p}}_3}{\|\mathbf{p}^{(k)} - \tilde{\mathbf{p}}_3\|_2} \\ \vdots \\ \frac{\mathbf{p}^{(k)} - \tilde{\mathbf{p}}_{N-1}}{\|\mathbf{p}^{(k)} - \tilde{\mathbf{p}}_{N-1}\|_2} - \frac{\mathbf{p}^{(k)} - \tilde{\mathbf{p}}_N}{\|\mathbf{p}^{(k)} - \tilde{\mathbf{p}}_N\|_2} \end{bmatrix}$$
(8)

Luis F. Abanto-Leon

Eindhoven University of Technology

10/16

Proposed Algorithm: RMSProp + AF

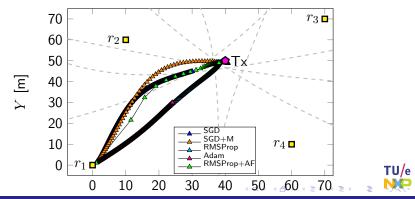
11/ 16

```
Algorithm 1: Proposed RMSProp with Adaptive Decaying Factor (RMSProp+AF)
  Input: The gradient \nabla_{\mathbf{p}}^{(k)}J of cost function J
  Output: The estimated position ô
  begin
            Step /Initialize the FIFO buffers b<sub>x</sub> and b<sub>y</sub> of size L.
            Step 2Initialize \rho^{(0)} = [0.99 \ 0.99]^T.
            Step 3Initialize r^{(0)} = [0 \ 0]^T.
            Step 4Define the vectors \mathbf{u}_{\tau} = \begin{bmatrix} 1 & 0 \end{bmatrix}^T and \mathbf{u}_{\tau} = \begin{bmatrix} 0 & 1 \end{bmatrix}^T.
         for k = 1 : K do
                  Step 5a:Compute the circular buffer index k'
                                k' = k - L \left| \frac{k - 1}{L} \right|
                  Step 5b:Store the square of gradient \nabla_{\mathbf{p}}^{(k)}J at index k' on each of the buffers
                                b_x(k') = \mathbf{u}_x^T \left( \nabla_{\mathbf{p}}^{(k)} J \odot \nabla_{\mathbf{p}}^{(k)} J \right)
                                b_n(k') = \mathbf{u}_n^T \left( \nabla_{\mathbf{p}}^{(k)} J \odot \nabla_{\mathbf{p}}^{(k)} J \right)
                  Step 5c:Define the vectors v ..... and v.
                                                                                 \min\{b_x\}
                                                \max\{b_x\}
                                                 \max\{b_y\}, \mathbf{v}_{min}
                                 v_{max} =
                                                                                    \min\{b_n\}
                  Step 5d:Compute the adaptive decaying factor \rho^{(k)}
                                \boldsymbol{\gamma}^{(k)} = (\mathbf{v}_{max} - \mathbf{v}_{min}) \oslash (\mathbf{v}_{max} + \mathbf{v}_{min} + \mathbf{1}_{2\times 1})
                                 \rho^{(k)} = \begin{bmatrix} \max \{ \mathbf{u}_{x}^{T} \rho^{(0)}, \mathbf{u}_{x}^{T} \gamma^{(k)} \} \\ \max \{ \mathbf{u}_{x}^{T} \rho^{(0)}, \mathbf{u}_{x}^{T} \gamma^{(k)} \} \end{bmatrix}
                  Step Se:Accumulate the squared gradient
                                 \mathbf{r}^{(k)} = \boldsymbol{\rho}^{(k)} \odot \mathbf{r}^{(k-1)} + (\mathbf{1}_{2\times 1} - \boldsymbol{\rho}^{(k)}) \odot \nabla_n^{(k)} J \odot \nabla_n^{(k)} J
                  Step 5f: Update the position
                                 \mathbf{p}^{(k+1)} = \mathbf{p}^{(k)} - \frac{\mu}{I + \sqrt{e^{(k)}}} \odot \nabla_{\mathbf{p}} J
            Step 6Output \hat{\mathbf{p}} = \mathbf{p}^{(K+1)}
```


Luis F. Abanto-Leon

Eindhoven University of Technology

<u>Scenario 1</u>: Consider that N = 4 receivers are located at positions $\tilde{\mathbf{p}}_1 = [0 \ 0]^T$, $\tilde{\mathbf{p}}_2 = [10 \ 60]^T$, $\tilde{\mathbf{p}}_3 = [70 \ 70]^T$ and $\tilde{\mathbf{p}}_4 = [60 \ 10]^T$. In addition, the unknown position of the transmitter is $\mathbf{p} = [40 \ 80]^T$.



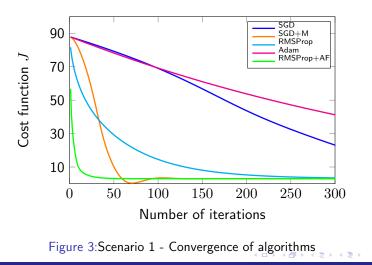
Luis F. Abanto-Leon

Eindhoven University of Technology

Background	TDOA Model	Problem Formulation	Proposed Algorithm	Simulation Results	Conclusions
00	000		0	○●○	00

Simulation Results: Case I

13/16

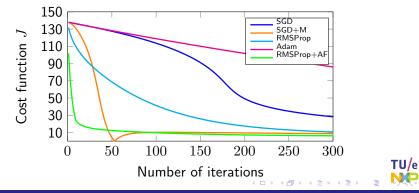


Luis F. Abanto-Leon

Eindhoven University of Technology

TU/e

<u>Scenario 2</u>: Consider that N = 4 receivers are located at positions $\tilde{\mathbf{p}}_1 = [0 \ 0]^T$, $\tilde{\mathbf{p}}_2 = [10 \ 60]^T$, $\tilde{\mathbf{p}}_3 = [70 \ 70]^T$ and $\tilde{\mathbf{p}}_4 = [60 \ 10]^T$. In addition, the unknown position of the transmitter is $\mathbf{p} = [75 \ 65]^T$.



Luis F. Abanto-Leon

Eindhoven University of Technology

Background 00	TDOA Model 000	Problem Formulation	Proposed Algorithm 0	Simulation Results	Conclusions ●0
Conclu	isions				15/ 16

- In this work we have presented a comparison of different optimization techniques—commonly used in the machine learning realm—to solve TDOA-based localization.
- We conclude that most of the approaches can be successfully applied and can outperform classical methods such as stochastic gradient descent.
- In addition, we presented an improved version named RMSProp+AF, which is capable of providing enhanced convergence in comparison to state-of-the-art approaches.
- We showed that the proposed scheme outperforms other competing approaches (i) when the transmitter is inside and (ii) when it is outside the convex hull.

Background 00	TDOA Model 000	Problem Formulation	Proposed Algorithm O	Simulation Results	Conclusions ○●
Questi	ons				16/ 16

Email: I.f.abanto@ieee.org

Luis F. Abanto-Leon

TDOA-based Localization via Stochastic Gradient Descent Variants

Eindhoven University of Technology