Enhanced C-V2X Mode-4 Subchannel Selection

Luis F. Abanto-Leon

Co-authors: Arie Koppelaar Sonia Heemstra de Groot

Department of Electrical Engineering Eindhoven University of Technology

IEEE 88th Vehicular Technology Conference (VTC 2018-Fall)

TU/e NP

(日) (四) (문) (문) (문)

Background 00	Sidelink Subchannels 000	C-V2X Mode-4 0000	Modified Power Averaging 0	Simulation Results	Conclusions 00
-					

Contents

- 1 Background
- **2** Sidelink Subchannels
- 3 C-V2X Mode-4
- 4 Modified Power Averaging
- **5** Simulation Results
- 6 Conclusions

Luis F. Abanto-Leon Enhanced C-V2X Mode-4 Subchannel Selection

ackground	Sidelink Subchannels	C-V2X Mode-4	Modified Power Averaging	Conclus
0				

Figure 1:Connected world

Luis F. Abanto-Leon

Eindhoven University of Technology

- 3GPP¹ proposed in Release 14, two novel schemes to support sidelink vehicular communications
 - C-V2X mode-3 (centralized)
 - C-V2X² mode-4 (distributed)

¹3GPP: The 3rd Generation Partnership Project ²C-V2X: Cellular Vehicle-to-Everything ³D2D: Device-to-Device communications

Luis F. Abanto-Leon

- 3GPP¹ proposed in Release 14, two novel schemes to support sidelink vehicular communications
 - C-V2X mode-3 (centralized)
 - C-V2X² mode-4 (distributed)
- C-V2X modes are based on LTE-D2D³ technology, where similar communication modalities were proposed.

¹3GPP: The 3rd Generation Partnership Project ²C-V2X: Cellular Vehicle-to-Everything ³D2D: Device-to-Device communications

Luis F. Abanto-Leon

- 3GPP¹ proposed in Release 14, two novel schemes to support sidelink vehicular communications
 - C-V2X mode-3 (centralized)
 - C-V2X² mode-4 (distributed)
- C-V2X modes are based on LTE-D2D³ technology, where similar communication modalities were proposed.
- However, in LTE-D2D (introduced for public safety) the ultimate objective is to prolong batteries lifespan (at the expense of compromising on latency).

¹3GPP: The 3rd Generation Partnership Project ²C-V2X: Cellular Vehicle-to-Everything ³D2D: Device-to-Device communications

Luis F. Abanto-Leon

Background 0●	Sidelink Subchannels 000	C-V2X Mode-4 0000	Modified Power Averaging 0	Simulation Results	Conclusions 00
Backg	round				4/ 19

• To fulfill the low latency and high reliability requirements:

Luis F. Abanto-Leon

Eindhoven University of Technology

Background 0●	Sidelink Subchannels	C-V2X Mode-4 0000	Modified Power Averaging 0	Simulation Results	Conclusions
Backg	round				4/ 19

- To fulfill the low latency and high reliability requirements:
- Modifications at PHY layer
 - Denser distribution of DMRS⁴

Luis F. Abanto-Leon

Eindhoven University of Technology

Background 0●	Sidelink Subchannels 000	C-V2X Mode-4 0000	Modified Power Averaging 0	Simulation Results	Conclusions 00
Backg	round				4/ 19

- To fulfill the low latency and high reliability requirements:
- Modifications at PHY layer
 - Denser distribution of DMRS⁴
- Modifications at MAC layer
 - A novel subchannelization⁵ containing
 - (*i*) sidelink control information (e.g. MCS)
 - (ii) transport block (data)

in the same subframe to minimize latency.

⁴Pilot symbols more closely spaced for channel estimation in high Doppler. ⁵A subchannel is a time-frequency resource chunk. $\Box \rightarrow \langle \bigcirc \rangle \rightarrow \langle \bigcirc \rangle \rightarrow \langle \bigcirc \rangle$

Background 0●	Sidelink Subchannels 000	C-V2X Mode-4 0000	Modified Power Averaging 0	Simulation Results	Conclusions 00
Backg	round				4/ 19

- To fulfill the low latency and high reliability requirements:
- Modifications at PHY layer
 - Denser distribution of DMRS⁴
- Modifications at MAC layer
 - A novel subchannelization⁵ containing
 - (*i*) sidelink control information (e.g. MCS)
 - (ii) transport block (data)

in the same subframe to minimize latency.

⁴Pilot symbols more closely spaced for channel estimation in high Doppler. ⁵A subchannel is a time-frequency resource chunk. $\Box \rightarrow \langle \bigcirc \rangle \rightarrow \langle \bigcirc \rangle \rightarrow \langle \bigcirc \rangle$

Sidelink Subchannels

- T: duration of a subframe
- K: number of subchannels per subframe
- L: total number of subframes for allocation
- B: subchannel bandwidth

Eindhoven University of Technology

Background 00	Sidelink Subchannels ○●○	C-V2X Mode-4 0000	Modified Power Averaging 0	Simulation Results	Conclusions

C-V2X Mode-4 Scenario

6/19

Luis F. Abanto-Leon

Eindhoven University of Technology

Background 00	Sidelink Subchannels 00●	C-V2X Mode-4 0000	Modified Power Averaging 0	Simulation Results	Conclusions

7/19

TU/e

 Vehicles typically exchange cooperative awareness messages (CAMs)⁶.

⁶It is assumed that a CAM message can fit in a subchannel. ⁷In the order of several hundred of milliseconds.

Eindhoven University of Technology

Background	Sidelink Subchannels	C-V2X Mode-4	Modified Power Averaging	Simulation Results	Conclusions
00	○○●	0000	0		00

'U/e

- Vehicles typically exchange cooperative awareness messages (CAMs)⁶.
- A CAM message contains relevant information of each vehicle: position, velocity, direction, etc.

⁶It is assumed that a CAM message can fit in a subchannel.

Luis F. Abanto-Leon

Eindhoven University of Technology

Background	Sidelink Subchannels	C-V2X Mode-4	Modified Power Averaging	Simulation Results	Conclusions
00	○○●	0000	0		00

- Vehicles typically exchange cooperative awareness messages (CAMs)⁶.
- A CAM message contains relevant information of each vehicle: position, velocity, direction, etc.
- CAM messages must be received reliably in order not to jeopardize safety.

⁶It is assumed that a CAM message can fit in a subchannel.

⁷In the order of several hundred of milliseconds.

Luis F. Abanto-Leon

Eindhoven University of Technology

Background 00	Sidelink Subchannels	C-V2X Mode-4 0000	Modified Power Averaging 0	Simulation Results	Conclusions

- Vehicles typically exchange cooperative awareness messages (CAMs)⁶.
- A CAM message contains relevant information of each vehicle: position, velocity, direction, etc.
- CAM messages must be received reliably in order not to jeopardize safety.
- Vehicles autonomously reserve a subchannel on a semi-persistent basis⁷ to add predictability.

 6 It is assumed that a CAM message can fit in a subchannel.

⁷In the order of several hundred of milliseconds.

Luis F. Abanto-Leon

Semi-Persistent Scheduling (SPS) Principle

Figure 3:SPS operation principle

Luis F. Abanto-Leon

Enhanced C-V2X Mode-4 Subchannel Selection

Eindhoven University of Technology

8/19

TU/e

Background	Sidelink Subchannels	C-V2X Mode-4	Modified Power Averaging	Simulation Results	Conclusions
00	000	0●00	0		00

- The scheduling scheme in C-V2X mode-4 consists of the following stages.
 - Power sensing in each subchannel
 - Subchannel ranking
 - Subchannel selection for semi-persistent transmissions
 - (Optional) Random retransmissions

9/19

Background 00	Sidelink Subchannels	C-V2X Mode-4 0●00	Modified Power Averaging 0	Simulation Results	Conclusions 00

- The scheduling scheme in C-V2X mode-4 consists of the following stages.
 - Power sensing in each subchannel
 - Subchannel ranking
 - Subchannel selection for semi-persistent transmissions
 - (Optional) Random retransmissions
- Vehicles sense the received power across all the subchannels before selecting one for their own utilization.

9/19

Background 00	Sidelink Subchannels	C-V2X Mode-4 0●00	Modified Power Averaging 0	Simulation Results	Conclusions

- The scheduling scheme in C-V2X mode-4 consists of the following stages.
 - Power sensing in each subchannel
 - Subchannel ranking
 - Subchannel selection for semi-persistent transmissions
 - (Optional) Random retransmissions
- Vehicles sense the received power across all the subchannels before selecting one for their own utilization.
- A vehicle autonomously reserves a subchannel on a semi-persistent basis to add predictability.

Luis F. Abanto-Leon

Background 00	Sidelink Subchannels	C-V2X Mode-4 ○●○○	Modified Power Averaging 0	Simulation Results	Conclusions 00

- The scheduling scheme in C-V2X mode-4 consists of the following stages.
 - Power sensing in each subchannel
 - Subchannel ranking
 - Subchannel selection for semi-persistent transmissions
 - (Optional) Random retransmissions
- Vehicles sense the received power across all the subchannels before selecting one for their own utilization.
- A vehicle autonomously reserves a subchannel on a semi-persistent basis to add predictability.
- Thus, vehicles can understand the subchannels utilization patterns and reduce the number of packet collisions.

9/19

Luis F. Abanto-Leon

Eindhoven University of Technology

Background	Sidelink Subchannels	C-V2X Mode-4	Modified Power Averaging	Conclusions
		0000		

Figure 4:Scheme with joint SPS scheduling and random retransmissions

Luis F. Abanto-Leon

Enhanced C-V2X Mode-4 Subchannel Selection

Eindhoven University of Technology

Image: A mathematical states and a mathem

TU/e

10/19

Background	Sidelink Subchannels	C-V2X Mode-4	Modified Power Averaging	Conclusions
		0000		

Power Sensing

$$\varepsilon_{i}^{(n,f,k)} = \begin{cases} \sum_{\substack{j = \{u | v_{u} \in \mathcal{V}^{(n,k)}\}\\ u \neq i}} I_{p} P_{j} \frac{G_{t} \cdot G_{r}}{\mathcal{X}_{ij}^{(n)} \cdot PL_{ij}^{(n)}} + P_{\sigma}, & \text{if } (*) \\ & \\ & \\ \infty, & \text{otherwise} \end{cases}$$
(1)

where
$$(*): k = \{m \mid S_i^{(n)} \cap \{s^{(1,m)}, \ldots, s^{(F,m)}\} = \emptyset\}$$

 $P_j = P_T$: transmit power from vehicle v_j .
 $PL_{ij}^{(n)}:$ path loss between vehicles v_i and v_j .
 $\mathcal{X}_{ij}^{(n)}:$ correlated shadowing between vehicles v_i and v_j .
 $\mathcal{V}^{(n,k)}:$ Set of vehicles that use the any subchannel in subframe k.

د ت > < @ > < ≥ > < ≥ > ≥ NC Eindhoven University of Technology

Luis F. Abanto-Leon

Background 00	Sidelink Subchannels	C-V2X Mode-4 0000	Modified Power Averaging •	Simulation Results	Conclusions 00

Exponentially-Weighted Moving Average

12/19

When $\alpha = 1$, the power averaging is compliant with the standardized linear average proposed by 3GPP. The proposed average power is given by

$$\tilde{\varepsilon}_{i}^{(n,f,k)} = \frac{\sum_{l=1}^{10} \alpha^{l} \varepsilon_{i}^{(n-l,f,k)}}{\sum_{l=1}^{10} \alpha^{l}},$$
(2)

where $\alpha \leq 1$ is an exponential weighting factor.

Luis F. Abanto-Leon

Background	Sidelink Subchannels	C-V2X Mode-4	Modified Power Averaging	Simulation Results	Conclusions
				•0000	

Simulation Parameters

Table 1:Simulation parameters

Description	Symbol	Value	Units
Number of RBs per subchannel (per subframe)	-	30	-
Number of sub-bands	F	3	-
Number of subchannels per sub-band	-	100	-
Number of subchannels	-	300	-
CAM message rate	Δ_{CAM}	10	Hz
CAM size	M_{CAM}	190	bytes
MCS	-	7	-
Transmit power per CAM	-	23	dBm
Transmit power per RB	P_T	6.67	mW
Effective coded throughput (24 CRC bits)	ρ	0.9402	bps/Hz
Throughput loss coefficient [?]	λ	0.6	-
SINR threshold	γ_T	2.9293	dB
Distance between Tx and Rx	D_x	50-300	m
Scheduling period [?]	T_{SPS}	0.5-1.5	s
Antenna gain	G_t, G_r	3	dB
Shadowing standard deviation	\mathcal{X}_{σ}	7	dB
Shadowing correlation distance	-	10	m

Luis F. Abanto-Leon

00 000 000 0 00000 00	Background	Sidelink Subchannels	C-V2X Mode-4	Modified Power Averaging	Simulation Results	Conclusions
					00000	

Vehicular Traces

Eindhoven University of Technology

Background 00	Sidelink Subchannels	C-V2X Mode-4 0000	Modified Power Averaging 0	Simulation Results	Conclusions 00

Simulations

Figure 6:PRR_{disk} for an urban scenario with $p_{keep} = 0$

Luis F. Abanto-Leon

Enhanced C-V2X Mode-4 Subchannel Selection

Eindhoven University of Technology

Background 00	Sidelink Subchannels	C-V2X Mode-4 0000	Modified Power Averaging 0	Simulation Results 000●0	Conclusions

Simulations

Figure 7:PRR_{ring} for an urban scenario with $p_{keep} = 0$

Luis F. Abanto-Leon

Enhanced C-V2X Mode-4 Subchannel Selection

Eindhoven University of Technology

00 000 0000 0 00000 00	Background	Sidelink Subchannels	C-V2X Mode-4	Modified Power Averaging	Simulation Results	Conclusions
					00000	

PRR Degradation Origin

Distance	PRR (Disk)	HD-SF (Disk)	HD-SC (Disk)	Propagation (Disk)	CCI (Disk)	IBE (Disk)	PRR (Ring)	HD-SF (Ring)	HD-SC (Ring)	Propagation (Ring)	CCI (Ring)	IBE (Ring)
50	98.8194	0.1262	0.1050	0.0000	0.8664	0.0830	98.8194	0.1262	0.1050	0.0000	0.8664	0.0830
100	97.7037	0.2167	0.1093	0.0031	1.5919	0.3753	96.7375	0.2952	0.1131	0.0058	2.2195	0.6289
150	95.4630	0.3354	0.1076	0.0799	2.9353	1.0788	91.9840	0.5197	0.1036	0.1990	5.0226	2.1711
200	91.8708	0.4291	0.1025	0.6057	5.0871	1.9048	84.0963	0.6320	0.0916	1.7436	9.7441	3.6924
250 300	86.5511 79.8627	0.5163	0.1017 0.1148	2.3065 5.5492	7.8852 10.7124	2.6392 3.1986	72.4718 59.0403	0.7469 0.7051	0.1005 0.1553	6.8081 15.6443	15.2899 19.5148	4.5828 4.9402

Figure 8:Classification (in percentage) of missed/undecodable packets - Urban scenario with $\alpha=1$ and $p_{keep}=0$

- PRR: packet reception ratio
- HD-SF: errors due half-duplex impairment in the same subframe
- HD-SC: errors due half-duplex impairment in the same subchannel
- Propagation: errors due to path-loss and shadowing
- CCI: errors due to co-channel interference
- IBE: errors due to in-band emissions

17/19

Background 00	Sidelink Subchannels	C-V2X Mode-4 0000	Modified Power Averaging 0	Simulation Results	Conclusions ●0
Conclu	usions				18/ 19

- In this work, we have presented link-level simulation results on the recently introduced technology C-V2X Mode 4.
- A new power averaging idea based on exponential weighting was proposed. It was shown that this modification improves the performance of the distributed scheduling C-V2X.
- In addition, the nature of each type of conflict was classified. We have observed that most of the packet errors are due to either CCI or IBE.
- Future work: Decentralized channel congestion control approaches will be studied in order to improve the performance of this distributed technology.

Background 00	Sidelink Subchannels 000	C-V2X Mode-4 0000	Modified Power Averaging O	Simulation Results	Conclusions ○●
Questi	ions				19/19

Email: I.f.abanto@ieee.org

Luis F. Abanto-Leon

Enhanced C-V2X Mode-4 Subchannel Selection

Eindhoven University of Technology

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A