Parallel and Successive Resource Allocation for V2V Communications in Overlapping Clusters

Luis F. Abanto-Leon

Co-authors: Arie Koppelaar Sonia Heemstra de Groot

Department of Electrical Engineering Eindhoven University of Technology

IEEE Vehicular Networking Conference (IEEE VNC 2017)

Contents

- 1 Background
- 2 V2V Mode-3
- **3** Sidelink Channelization
- **4** Problem Formulation
- **5** Proposed Approaches
- 6 Simulations
- 7 Conclusions

Luis F. Abanto-Leon

Eindhoven University of Technology

In Release 14, 3GPP completed a first standard on C-V2X, where vehicle-to-vehicle (V2V) mode-3¹ was introduced.

¹V2V mode-4 was also presented

Luis F. Abanto-Leon

Eindhoven University of Technology

- In Release 14, 3GPP completed a first standard on C-V2X, where vehicle-to-vehicle (V2V) mode-3¹ was introduced.
- Both modes are based on device-to-device (D2D) communications technology.

¹V2V mode-4 was also presented

Luis F. Abanto-Leon

Eindhoven University of Technology

- In Release 14, 3GPP completed a first standard on C-V2X, where vehicle-to-vehicle (V2V) mode-3¹ was introduced.
- Both modes are based on device-to-device (D2D) communications technology.
- Additional modifications have been applied to both modes in order to support more dynamic scenarios.

¹V2V mode-4 was also presented

Luis F. Abanto-Leon

Eindhoven University of Technology

■ Besides uplink and downlink, vehicles can also communicate via sidelink → direct communications.

Luis F. Abanto-Leon

Eindhoven University of Technology

5/28

In V2V mode-3 data traffic from/to vehicles do not traverse the eNodeB. Thus,

Luis F. Abanto-Leon

Eindhoven University of Technology

In V2V mode-3 data traffic from/to vehicles do not traverse the eNodeB. Thus,

eNodeBs only intervene in the resource allocation process.

Luis F. Abanto-Leon

Eindhoven University of Technology

5/28

- In V2V mode-3 data traffic from/to vehicles do not traverse the eNodeB. Thus,
 - eNodeBs only intervene in the resource allocation process.
 - Vehicles communicate directly via sidelink in a broadcast manner.

Luis F. Abanto-Leon

Eindhoven University of Technology

5/28

- In V2V mode-3 data traffic from/to vehicles do not traverse the eNodeB. Thus,
 - eNodeBs only intervene in the resource allocation process.
 - Vehicles communicate directly via sidelink in a broadcast manner.
- In safety applications, vehicles exchange CAM messages.

5/28

Luis F. Abanto-Leon

Eindhoven University of Technology

V2V Mode-3 Operation (cont'd)

6/28

 Due to the broadcast nature of V2V mode-3, the resource allocation process differs from mainstream communications.

Luis F. Abanto-Leon

Eindhoven University of Technology

V2V Mode-3 Operation (cont'd)

6/28

 Due to the broadcast nature of V2V mode-3, the resource allocation process differs from mainstream communications.

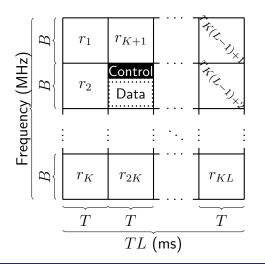
Example:

If two vehicles in mutual awareness range transmit concurrently they will not receive the message of the other.

Luis F. Abanto-Leon

Eindhoven University of Technology

Sidelink Channelization



- T: subframe duration
- K: subchannels per subframe
- L: available subframes for allocation
- B: subchannel bandwidth

7/28

Luis F. Abanto-Leon

Eindhoven University of Technology

Subchannel Structure

- *B*: 1.26 MHz
- *T*: 1 ms (2 slots of 0.5 ms each)
- Control: 2 RBs² per slot \leftarrow 24 subcarriers
- Data: 5 RBs per slot ← 60 subcarriers

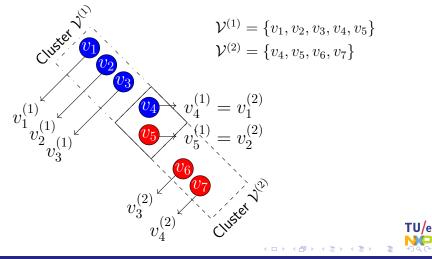
Subchannel

We assume that 14 RBs can bear a payload of 200 bytes provided that eNodeBs can control power and MCS levels.

²RB: A resource block consists of 12 subcarriers

Luis F. Abanto-Leon

Eindhoven University of Technology

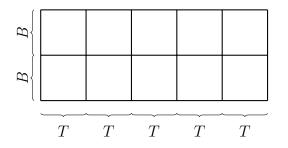


Luis F. Abanto-Leon

Eindhoven University of Technology

9/28

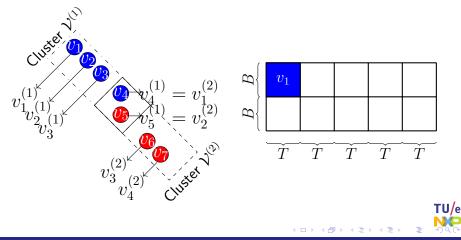
10/28



How can we accommodate the shown vehicles in the available subchannels?

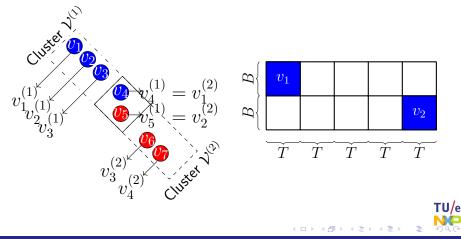
Luis F. Abanto-Leon

Eindhoven University of Technology



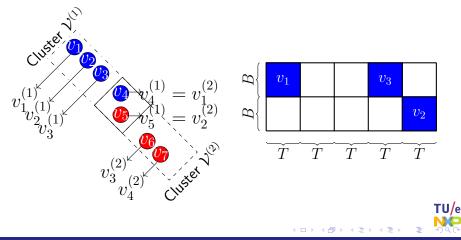
Luis F. Abanto-Leon

Eindhoven University of Technology



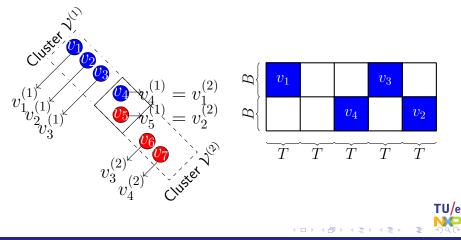
Luis F. Abanto-Leon

Eindhoven University of Technology



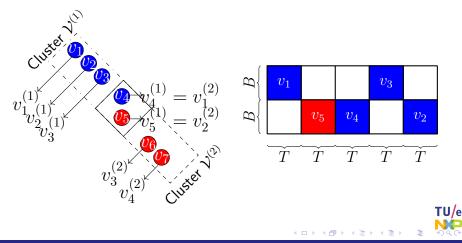
Luis F. Abanto-Leon

Eindhoven University of Technology



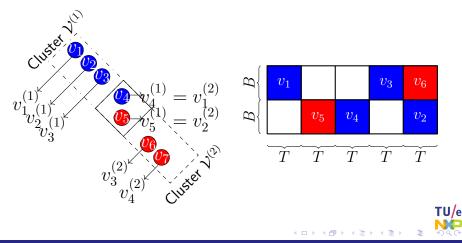
Luis F. Abanto-Leon

Eindhoven University of Technology



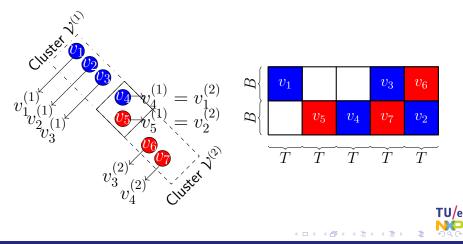
Luis F. Abanto-Leon

Eindhoven University of Technology



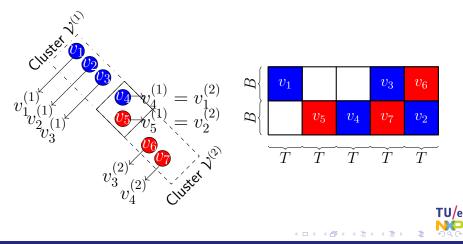
Luis F. Abanto-Leon

Eindhoven University of Technology



Luis F. Abanto-Leon

Eindhoven University of Technology



Luis F. Abanto-Leon

Eindhoven University of Technology

Problem Formulation

Identified Issues

- Vehicles can either transmit or receive at a time due to half-duplex PHY assumption.
- Concurrent transmissions in subchannels of the same subframe constitute a conflict.

Objectives

- Attain a conflict-free subchannel assignment.
- Maximize the sum-capacity of the system.

Luis F. Abanto-Leon

Eindhoven University of Technology

TU/e

12/28

Problem Formulation (cont'd)

Identified Issues

- Vehicles can either transmit or receive at a time due to half-duplex PHY assumption.
- Concurrent transmissions in subchannels of the same subframe constitute a conflict.

Proposed Solutions

- Two approaches based on bipartite graph matching.
- Necessary constraints to prevent conflicts have been considered.

Eindhoven University of Technology

TU/e

13/28

Problem Formulation (cont'd)

14/28

■ For N vehicles and KL subchannels, a solution can be obtained upon solving

$$\begin{array}{l} \max \, \mathbf{c}^T \mathbf{x} \\ \text{subject to} \, \underbrace{\left(\begin{bmatrix} \mathbf{I}_{N \times N} \otimes \mathbf{1}_{1 \times L} \\ \overline{\mathbf{Q}_{J \times N} \otimes \mathbf{I}_{L \times L}} \end{bmatrix} \otimes \mathbf{1}_{1 \times K} \right)}_{\text{constraint matrix}} \mathbf{x} = \mathbf{1} \end{array}$$

• However, this expression is complex to optimize.

Luis F. Abanto-Leon

Eindhoven University of Technology

Proposed Approaches

We propose two approaches:

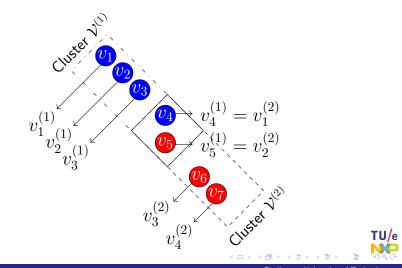
- BGM-SA: bipartite graph matching-based successive allocation
- BGM-PA: bipartite graph matching-based parallel allocation

Luis F. Abanto-Leon

Eindhoven University of Technology

15/28

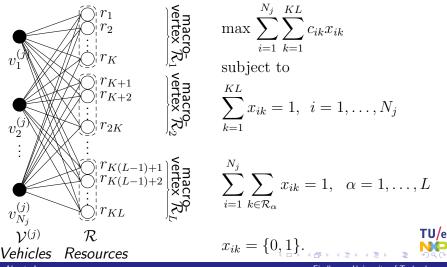
BGM-SA



Eindhoven University of Technology

BGM-SA: Bipartite Graph

17/28



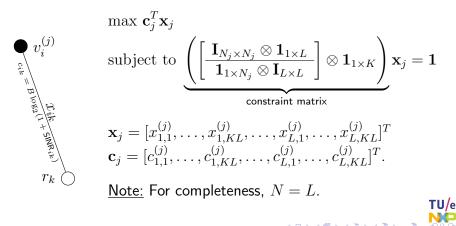
Luis F. Abanto-Leon

Eindhoven University of Technology

BGM-SA: Optimization Problem

18/28

The optimization problem can be recast as:



Luis F. Abanto-Leon

Eindhoven University of Technology

BGM-SA: Transformation

Transformation

$$\mathbf{x}_{j} \longrightarrow \mathbf{I}_{M \times M} \otimes \mathbf{1}_{1 \times K} \longrightarrow \mathbf{y}_{j}$$

$$\mathbf{c}_{j} \longrightarrow diag(\cdot) \longrightarrow \mathbf{X} \longrightarrow \mathbf{I}_{M \times M} \otimes \mathbf{1}_{1 \times K} \longrightarrow \mathbf{d}_{j}$$

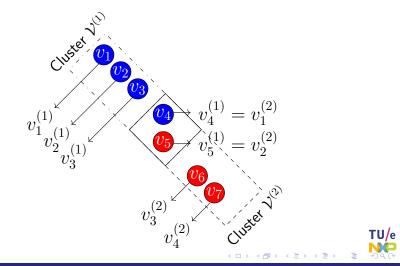
$$\begin{array}{l} \max \, \mathbf{d}_{j}^{T} \mathbf{y}_{j} \\ \text{subject to} \, \left[\frac{\mathbf{I}_{L \times L} \otimes \mathbf{1}_{1 \times L}}{\mathbf{1}_{1 \times L} \otimes \mathbf{I}_{L \times L}} \right] \mathbf{y}_{j} = \mathbf{1} \end{array}$$

This problem can be approached via Kuhn-Munkres algorithm.

Luis F. Abanto-Leon

Eindhoven University of Technology

BGM-PA

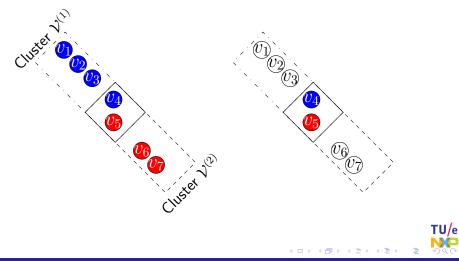


Luis F. Abanto-Leon

Eindhoven University of Technology

BGM-PA: Random Pre-grouping

21/28

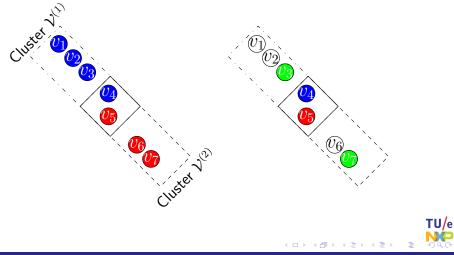


Luis F. Abanto-Leon

Eindhoven University of Technology

BGM-PA: Random Pre-grouping

21/28

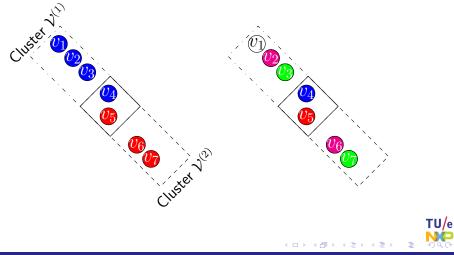


Luis F. Abanto-Leon

Eindhoven University of Technology

BGM-PA: Random Pre-grouping

21/28

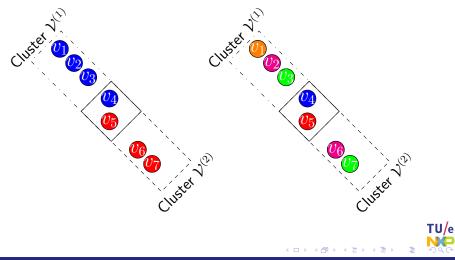


Luis F. Abanto-Leon

Eindhoven University of Technology

BGM-PA: Random Pre-grouping

21/28

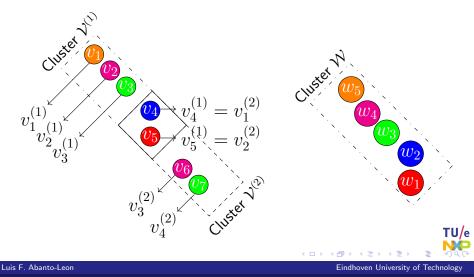


Luis F. Abanto-Leon

Eindhoven University of Technology

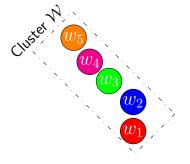
BGM-PA: Random Pre-grouping

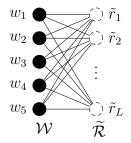
22/28



BGM-PA: Random Pre-grouping

23/28





Luis F. Abanto-Leon

Eindhoven University of Technology

BGM-PA: Matching

24/28

But, what criterion should we use for matching?

- Minimum (MIN) \rightarrow BGM-PA-MIN
- Maximum (MAX) → BGM-PA-MAX
- Average (AVE) \rightarrow BGM-PA-AVE
- Inverse of variance (IVAR) \rightarrow BGM-PA-IVAR
- Minimum plus maximum (MPM) \rightarrow BGM-PA-MPM
- Combined metrics (COMB) \rightarrow BGM-PA-COMB COMB = AVE + MIN - \sqrt{VAR}

Luis F. Abanto-Leon

Eindhoven University of Technology

Simulations: Data Rate per Vehicle

25/28

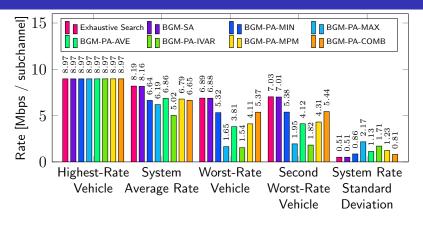


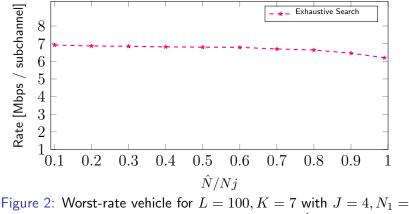
Figure 1: Data rate for N = 210, L = 100 and K = 7 with $J = 3, N_1 = 100, N_2 = 90, N_3 = 80, \hat{N} = 30$

Eindhoven University of Technology

TU/e

Luis F. Abanto-Leon

26/28



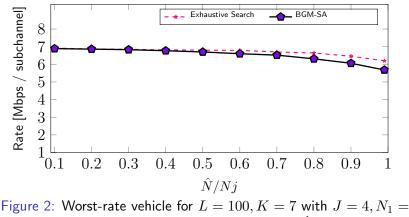
 $100, N_2 = 100, N_3 = 100, N_4 = 100$ and varying \hat{N} .

TU/e

Luis F. Abanto-Leon

Eindhoven University of Technology

26/28



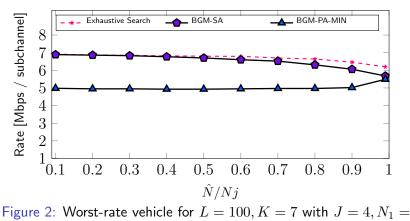
 $100, N_2 = 100, N_3 = 100, N_4 = 100$ and varying \hat{N} .

Luis F. Abanto-Leon

Eindhoven University of Technology

TU/e

26/28



 $100, N_2 = 100, N_3 = 100, N_4 = 100$ and varying \hat{N} .

Eindhoven University of Technology

TU/e

26/28

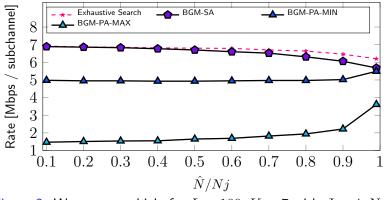


Figure 2: Worst-rate vehicle for L = 100, K = 7 with $J = 4, N_1 = 100, N_2 = 100, N_3 = 100, N_4 = 100$ and varying \hat{N} .

Luis F. Abanto-Leon

Eindhoven University of Technology

TU/e

26/28

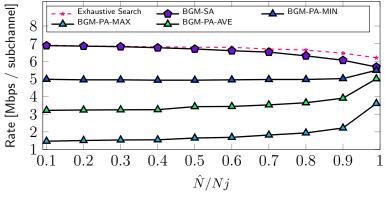


Figure 2: Worst-rate vehicle for L = 100, K = 7 with $J = 4, N_1 = 100, N_2 = 100, N_3 = 100, N_4 = 100$ and varying \hat{N} .

Luis F. Abanto-Leon

Eindhoven University of Technology

TU/e

26/28

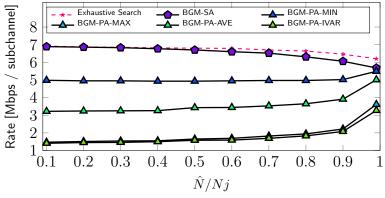


Figure 2: Worst-rate vehicle for L = 100, K = 7 with $J = 4, N_1 = 100, N_2 = 100, N_3 = 100, N_4 = 100$ and varying \hat{N} .

Eindhoven University of Technology

TU/e

26/28

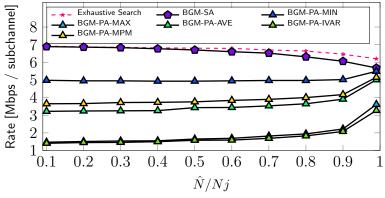


Figure 2: Worst-rate vehicle for L = 100, K = 7 with $J = 4, N_1 = 100, N_2 = 100, N_3 = 100, N_4 = 100$ and varying \hat{N} .

Luis F. Abanto-Leon

Eindhoven University of Technology

TU/e

26/28

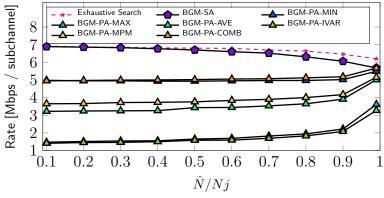


Figure 2: Worst-rate vehicle for L = 100, K = 7 with $J = 4, N_1 = 100, N_2 = 100, N_3 = 100, N_4 = 100$ and varying \hat{N} .

Luis F. Abanto-Leon

Eindhoven University of Technology

TU/e

Conclusions

- Two approaches for V2V *mode-3* were presented.
- We identified a trade-off between performance and complexity in the proposed approaches.
- Six metrics for representing the channel conditions of a group of vehicles were presented.
- The number of vehicles at the intersection impacts on the performance of the proposed methods.

Luis F. Abanto-Leon

Eindhoven University of Technology

Questions

28/28

Luis F. Abanto-Leon

Eindhoven University of Technology

Objective Function

 $\max \mathbf{c}^T \mathbf{x}$

Because $\mathbf{x} \in \mathbb{B}^{MK}$, then the objective function can be recast as

$$\mathbf{c}^T \mathbf{x} \equiv \mathbf{x}^T diag(\mathbf{c}) \mathbf{x}$$

without affecting optimality. Note that $M = N^2$.

Luis F. Abanto-Leon

Eindhoven University of Technology

Objective Function

 $\max \mathbf{c}^T \mathbf{x}$

For any vehicle v_i ,

$$x_{ij}x_{ik} = 0, \ r_j, r_k \in \mathcal{R}_{\alpha}.$$

Moreover,

$$c_{ij}x_{ij}x_{ik} = 0, \ r_j, r_k \in \mathcal{R}_{\alpha}.$$

In general, for N vehicles

$$\mathbf{x}^{T} \big(\mathbf{I}_{M \times M} \otimes [\mathbf{1}_{K \times K} - \mathbf{I}_{K \times K}] \big) diag(\mathbf{c}) \mathbf{x} = 0.$$

Luis F. Abanto-Leon

Eindhoven University of Technology

Objective Function

 $\max \mathbf{c}^T \mathbf{x}$

As long as $\mathbf{x}^T (\mathbf{I}_{M \times M} \otimes [\mathbf{1}_{K \times K} - \mathbf{I}_{K \times K}]) diag(\mathbf{c}) \mathbf{x} = 0$ holds, conflicts will be prevented.

We can aggregate this condition to the objective function. Hence,

$$\mathbf{c}^{T}\mathbf{x} = \mathbf{x}^{T} diag(\mathbf{c})\mathbf{x} + \mathbf{x}^{T} \big(\mathbf{I}_{M \times M} \otimes [\mathbf{1}_{K \times K} - \mathbf{I}_{K \times K}] \big) diag(\mathbf{c})\mathbf{x}$$

Further manipulation leads to

$$\mathbf{c}^T \mathbf{x} = \mathbf{x}^T (\mathbf{I}_{M \times M} \otimes \mathbf{1}_{K \times K}) diag(\mathbf{c}) \mathbf{x}$$

Luis F. Abanto-Leon

Eindhoven University of Technology

Objective Function

 $\max \mathbf{c}^T \mathbf{x}$

Luis E Abant

Property 1 (Product of two tensor products) Let $\mathbf{X} \in \mathbb{R}^{m \times n}$, $\mathbf{Y} \in \mathbb{R}^{r \times s}$, $\mathbf{W} \in \mathbb{R}^{n \times p}$, and $\mathbf{Z} \in \mathbb{R}^{s \times t}$, then $\mathbf{XY} \otimes \mathbf{WZ} = (\mathbf{X} \otimes \mathbf{W})(\mathbf{Y} \otimes \mathbf{Z}) \in \mathbb{R}^{mr \times pt}$

$$\mathbf{c}^{T}\mathbf{x} = \mathbf{x}^{T}(\mathbf{I}_{M\times M}\otimes \mathbf{1}_{K\times K})diag(\mathbf{c})\mathbf{x}$$

$$= \mathbf{x}^{T}(\mathbf{I}_{M\times M}\mathbf{I}_{M\times M}\otimes \mathbf{1}_{K\times 1}\mathbf{1}_{1\times K})diag(\mathbf{c})\mathbf{x}$$

$$= \underbrace{\mathbf{x}^{T}(\mathbf{I}_{M\times M}\otimes \mathbf{1}_{K\times 1})}_{\mathbf{y}^{T}}\underbrace{(\mathbf{I}_{M\times M}\otimes \mathbf{1}_{1\times K})diag(\mathbf{c})\mathbf{x}}_{\mathbf{u}\in\mathbf{d}} \underbrace{\mathbf{T}_{W}(\mathbf{c})\mathbf{x}}_{\mathbf{u}\in\mathbf{d}} \underbrace{\mathbf{T}_{W}(\mathbf{c})\mathbf{x}}_{\mathbf{u}\in\mathbf$$

Constraints

subject to
$$\begin{bmatrix} \mathbf{I}_{N \times N} \otimes \mathbf{1}_{1 \times N} \\ \mathbf{1}_{1 \times N} \otimes \mathbf{I}_{N \times N} \end{bmatrix} \otimes \mathbf{1}_{1 \times K} \mathbf{x} = \mathbf{1}$$

Property 2 (Pseudo-inverse of a tensor product) Let $\mathbf{X} \in \mathbb{R}^{m \times n}$ and $\mathbf{Y} \in \mathbb{R}^{r \times s}$, then $(\mathbf{X} \otimes \mathbf{Y})^{\dagger} = \mathbf{X}^{\dagger} \otimes \mathbf{Y}^{\dagger} \in \mathbb{R}^{ns \times mr}$

Luis F. Abanto-Leon

Eindhoven University of Technology

Constraints

subject to
$$\left[\frac{\mathbf{I}_{N \times N} \otimes \mathbf{1}_{1 \times N}}{\mathbf{1}_{1 \times N} \otimes \mathbf{I}_{N \times N}} \right] \otimes \mathbf{1}_{1 \times K} \mathbf{x} = \mathbf{1}$$

$$\left(\begin{bmatrix} \mathbf{I}_{N \times N} \otimes \mathbf{1}_{1 \times N} \\ \mathbf{1}_{1 \times N} \otimes \mathbf{I}_{N \times N} \end{bmatrix} \otimes \mathbf{1}_{1 \times K} \right) \left(\mathbf{I}_{M \times M} \otimes \mathbf{1}_{1 \times K}^{\dagger} \right) \mathbf{y} = \mathbf{1}$$
$$= \left(\begin{bmatrix} \mathbf{I}_{N \times N} \otimes \mathbf{1}_{1 \times N} \\ \mathbf{1}_{1 \times N} \otimes \mathbf{I}_{N \times N} \end{bmatrix} \mathbf{I}_{M \times M} \right) \otimes \underbrace{\left(\mathbf{1}_{1 \times K} \mathbf{1}_{1 \times K}^{\dagger} \right)}_{\mathbf{1}} \mathbf{y} = \mathbf{1}$$
$$= \begin{bmatrix} \mathbf{I}_{N \times N} \otimes \mathbf{1}_{1 \times N} \\ \mathbf{1}_{1 \times N} \otimes \mathbf{I}_{N \times N} \end{bmatrix} \mathbf{y} = \mathbf{1}$$

Luis F. Abanto-Leon

Eindhoven University of Technology

/e

Original Problem

Luis E

max
$$\mathbf{c}^T \mathbf{x}$$
, subject to $\begin{bmatrix} \mathbf{I}_{N \times N} \otimes \mathbf{1}_{1 \times N} \\ \mathbf{1}_{1 \times N} \otimes \mathbf{I}_{N \times N} \end{bmatrix} \otimes \mathbf{1}_{1 \times K} \mathbf{x} = \mathbf{1}$

Resultant Problemmax
$$\mathbf{d}^T \mathbf{y}$$
,subject to $\begin{bmatrix} \mathbf{I}_{N \times N} \otimes \mathbf{1}_{1 \times N} \\ \mathbf{1}_{1 \times N} \otimes \mathbf{I}_{N \times N} \end{bmatrix} \mathbf{y} = \mathbf{1}.$

where
$$\mathbf{d} = (\mathbf{I}_{M \times M} \otimes \mathbf{1}_{1 \times K}) diag(\mathbf{c}) \mathbf{x}$$
 and
 $\mathbf{y} = (\mathbf{I}_{M \times M} \otimes \mathbf{1}_{1 \times K}) \mathbf{x}$
Dimensionality reduction: $\rightarrow |\mathbf{x}| = MK \quad \rightarrow |\mathbf{y}| = M$.
The resultant problem can now be approached through
the Kubn Munkros Algorithm
Abanto-Leon
Eindhoven University of Technology

Transformation

$$\mathbf{d} = \lim_{\beta \to \infty} \frac{1}{\beta} \log^{\circ} \left\{ (\mathbf{I}_{M \times M} \otimes \mathbf{1}_{1 \times K}) \mathrm{e}^{\circ \beta \mathbf{c}} \right\}$$

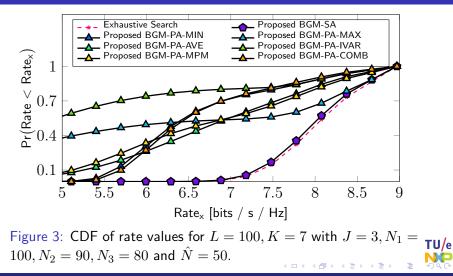
 $\log^{\circ}{\{\cdot\}}$: Element-wise natural logarithm. $e^{\circ\{\cdot\}}$ Hadamard exponential.

Luis F. Abanto-Leon

Eindhoven University of Technology

Simulations: CDF

37/28



Luis F. Abanto-Leon

Eindhoven University of Technology

Simulations: Data Rate per Vehicle

38/28

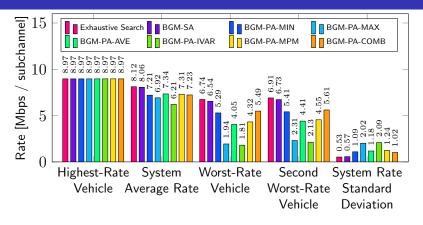


Figure 4: Data rate for N = 130, L = 100 and K = 7 with $J = 3, N_1 = 100, N_2 = 90, N_3 = 80, \hat{N} = 70$

Eindhoven University of Technology

TU/e