Fairness-Aware Hybrid Precoding for mmWave NOMA Unicast/Multicast Transmissions in Industrial IoT

Luis F. Abanto-Leon

Co-author: Gek Hong (Allyson) Sim

Department of Computer Science Technical University of Darmstadt

IEEE International Conference on Communications (ICC 2020) SAC-IOT3: Internet of Things III (2nd Paper)

3

(日) (部) (注) (注)

Motivation 0000	System Model 0000	Problem Formulation O	Proposed Solution	Simulation Results 0000000	Conclusions 00
~					

Contents

1 Motivation

- 2 System Model
- **3** Problem Formulation
- **4** Proposed Solution
- **5** Simulation Results
- 6 Conclusions

Luis F. Abanto-Leon

Technical University of Darmstadt

Motivation ●000	System Model 0000	Problem Formulation 0	Proposed Solution	Simulation Results	Conclusions
Motiva	ation				3/ 26

 In factories, multiple industrial devices are inherently hyper-connected via hard-wiring to ensure safety.

Luis F. Abanto-Leon

Technical University of Darmstadt

Motivation ●000	System Model 0000	Problem Formulation 0	Proposed Solution	Simulation Results	Conclusions
Motiva	ation				3/ 26

- In factories, multiple industrial devices are inherently hyper-connected via hard-wiring to ensure safety.
- Wired connections hinder automation deployment and constrain the mobile robotics mechanics.

Luis F. Abanto-Leon

Technical University of Darmstadt

Motivation ●000	System Model 0000	Problem Formulation 0	Proposed Solution	Simulation Results 0000000	Conclusions
Motiv	ation				3/26

- In factories, multiple industrial devices are inherently hyper-connected via hard-wiring to ensure safety.
- Wired connections hinder automation deployment and constrain the mobile robotics mechanics.
- Due to rapid densification of industrial devices, wired connections become less appealing for factories of the future.

Luis F. Abanto-Leon

Technical University of Darmstadt

Motivation ●000	System Model 0000	Problem Formulation 0	Proposed Solution	Simulation Results	Conclusions
Motiv	ation				2/26

- In factories, multiple industrial devices are inherently hyper-connected via hard-wiring to ensure safety.
- Wired connections hinder automation deployment and constrain the mobile robotics mechanics.
- Due to rapid densification of industrial devices, wired connections become less appealing for factories of the future.
- Wireless information transmission is a viable alternative for these environments.

Motivation ●000	System Model 0000	Problem Formulation 0	Proposed Solution	Simulation Results	Conclusions 00
Motiv	ation				2/00

- In factories, multiple industrial devices are inherently hyper-connected via hard-wiring to ensure safety.
- Wired connections hinder automation deployment and constrain the mobile robotics mechanics.
- Due to rapid densification of industrial devices, wired connections become less appealing for factories of the future.
- Wireless information transmission is a viable alternative for these environments.
- However, guaranteeing high performance in terms of fairness, spectral efficiency and reliability is a challenging task.

Technical University of Darmstadt

Motivation	System Model	Problem Formulation	Proposed Solution	Conclusions
0000				

Problem Overview

We investigate dual-layer non-orthogonal transmissions for industrial IoT millimeter-wave communications.
Primary layer: ubiquitous multicast signal devised to serve all the devices with a common message
Secondary layer: composite signal consisting of private unicast messages.
We jointly optimize the *hybrid precoder, analog combiners, power allocation,* and *fairness.* The performance is evaluated in terms of the spectral efficiency, fairness, and bit error rate.

Motivation	System Model	Problem Formulation	Proposed Solution	Conclusions
0000				

Solution Overview

We propose two solutions:

PLDM-1: designs independently the multicast precoder from the unicast precoders

PLDM-2: the multicast precoder is obtained as a combination of the unicast precoding vectors

5/26

Luis F. Abanto-Leon

Technical University of Darmstadt

Motivation

0000

Proposed Solution

Non-Orthogonal Unicast/Multicast System

6/26

Figure: K-user Non-Orthogonal Unicast/Multicast System

Luis F. Abanto-Leon

Technical University of Darmstadt

Motivation	System Model	Problem Formulation	Proposed Solution	Conclusions
	0000			

Hybrid Precoder

Luis F. Abanto-Leon

Technical University of Darmstadt

Motivation 0000	System Model ○●○○	Problem Formulation 0	Proposed Solution	Simulation Results	Conclusions 00

System Model

8/26

INNERSITA

The downlink signal is

$$\mathbf{x} = \mathbf{F} \left[\mathbf{B} | \mathbf{m} \right] \left[\mathbf{s} | z \right]^T \tag{1}$$

where

$$\begin{split} \mathbf{F} &= [\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_K] \in \mathbb{C}^{N_{\text{tx}} \times K} : \text{analog precoder} \\ \mathbf{B} &= [\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_K] \in \mathbb{C}^{K \times K} : \text{digital unicast precoder} \\ \mathbf{m} &= [m_1, m_2, \dots, m_K]^T \in \mathbb{C}^{K \times 1} : \text{digital multicast precoder} \\ \mathbf{s} &= [s_1, s_2, \dots, s_K]^T \in \mathbb{C}^{K \times 1} : \text{unicast symbols} \\ z \in \mathbb{C} : \text{multicast symbol} \end{split}$$

Throughout the paper we assume that $N_{\mathrm{tx}}^{\mathrm{RF}}=K$

Technical University of Darmstadt

Luis F. Abanto-Leon

Motivation 0000	System Model 00●0	Problem Formulation 0	Proposed Solution	Simulation Results	Conclusions 00

System Model

The received signal at user $k \in \mathcal{K}$ is

$$y_{k} = \underbrace{\mathbf{w}_{k}^{H} \mathbf{H}_{k} \mathbf{F} \mathbf{m}_{z}}_{\text{common multicast signal}} + \underbrace{\mathbf{w}_{k}^{H} \mathbf{H}_{k} \mathbf{F} \mathbf{b}_{k} s_{k}}_{\text{unicast signal for device } k} + \underbrace{\mathbf{w}_{k}^{H} \mathbf{H}_{k} \mathbf{F} \sum_{j \neq k} \mathbf{b}_{j} s_{j}}_{\text{interference at device } k} + \underbrace{\mathbf{w}_{k}^{H} \mathbf{m}_{k}}_{\text{noise}}, \quad (2)$$

 \mathbf{w}_k : combiner of the k-th user \mathbf{H}_k : channel between the gNodeB and the k-th user $\mathcal{K} = \{1, \dots, K\}$: set of users K: number of users

Luis F. Abanto-Leon

Technical University of Darmstadt

Motivation 0000	System Model 000●	Problem Formulation 0	Proposed Solution	Simulation Results	Conclusions
Syster	n Model				10/ 26

The multicast and unicast SINRs at $k \in \mathcal{K}$ are

$$\tilde{\gamma}_{k} = \frac{\left|\mathbf{w}_{k}^{H}\mathbf{H}_{k}\mathbf{Fm}\right|^{2}}{\sum_{j}\left|\mathbf{w}_{k}^{H}\mathbf{H}_{k}\mathbf{Fb}_{j}\right|^{2} + \sigma^{2}\left\|\mathbf{w}_{k}\right\|_{2}^{2}}$$
(3)
$$\gamma_{k} = \frac{\left|\mathbf{w}_{k}^{H}\mathbf{H}_{k}\mathbf{Fb}_{k}\right|^{2}}{\sum_{j\neq k}\left|\mathbf{w}_{k}^{H}\mathbf{H}_{k}\mathbf{Fb}_{j}\right|^{2} + \sigma^{2}\left\|\mathbf{w}_{k}\right\|_{2}^{2}}$$
(4)

 $\tilde{\gamma}_k$: multicast SINR at the k-th user γ_k : unicast SINR at the k-th user

Luis F. Abanto-Leon

Technical University of Darmstadt

Motivation	System Model	Problem Formulation	Proposed Solution	Simulation Results	Conclusions
0000	0000	<u> </u>	000000	0000000	00

Problem Formulation

 \mathcal{P} :

$\max_{\substack{\{\mathbf{w}_k\}_{k=1}^K, \{\mathbf{f}_k\}_{k=1}^K, \\ \{\mathbf{b}_k\}_{k=1}^K, \mathbf{m}, \Delta}}$	$\sum_{k} \log_2 \left(1 + \tilde{\gamma}_k\right) + \log_2 \left(1 + \gamma_k\right) - C' \Delta$	(5a)
s.t.	$ \tilde{\gamma}_k - \gamma_{\min} \le \Delta, \forall k \in \mathcal{K},$	(5b)
	$\tilde{\gamma}_1 \geq \tilde{\gamma}_2 \geq \ldots \geq \tilde{\gamma}_K \geq \tilde{\gamma}_1,$	(5c)
	$\left\ \mathbf{Fm}\right\ _{2}^{2}/\sum_{k}\left\ \mathbf{Fb}_{k} ight\ _{2}^{2}\geqeta,$	(5d)
	$\ \mathbf{Fm}\ _2^2 + \sum_k \ \mathbf{Fb}_k\ _2^2 \le P_{\mathrm{tx}},$	(5e)
	$\left[\mathbf{F}\right]_{q,r}\in\mathcal{F},q\in\mathcal{Q},r\in\mathcal{R},$	(5f)
	$\left[\mathbf{w}_{k}\right]_{n} \in \mathcal{W}, n \in \mathcal{N}, \forall k \in \mathcal{K},$	(5g)
	$\Delta \ge 0,$	(5h)

 $\mathcal{F}:$ allowed phase shifts at the precoder $\mathcal{W}:$ allowed phase shifts at the combiners

Luis F. Abanto-Leon

Technical University of Darmstadt

Motivation	System Model	Problem Formulation	Proposed Solution	Conclusions
			00000	

Proposed Solution

 \mathcal{P}_0 :

12/26

$$\max_{\substack{\{\mathbf{w}_k\}_{k=1}^{K}, \{\mathbf{f}_k\}_{k=1}^{K}, \\ \{p_k\}_{k=1}^{K}, \{\mathbf{v}_k\}_{k=1}^{K}, \mathbf{w}, \Delta}} \sum_{k} \tilde{\gamma}_k + \gamma_k - C\Delta$$
(6a)

$$|\tilde{\gamma}_k - \gamma_{\min}| \le \Delta, \forall k \in \mathcal{K},$$
 (6b)

$$\tilde{\gamma}_1 \ge \tilde{\gamma}_2 \ge \ldots \ge \tilde{\gamma}_K \ge \tilde{\gamma}_1,$$
 (6c)

$$\|\mathbf{Fm}\|_{2}^{2} / \sum_{k} p_{k} \|\mathbf{Fv}_{k}\|_{2}^{2} \ge \beta,$$
 (6d)

$$\|\mathbf{Fm}\|_{2}^{2} + \sum_{k} p_{k} \|\mathbf{Fv}_{k}\|_{2}^{2} \le P_{tx},$$
 (6e)

$$[\mathbf{F}]_{q,r} \in \mathcal{F}, q \in \mathcal{Q}, r \in \mathcal{R},$$
(6f)

$$\left[\mathbf{w}_{k}\right]_{n} \in \mathcal{W}, n \in \mathcal{N}, \forall k \in \mathcal{K},$$
(6g)

$$\|\mathbf{v}_k\|_2^2 = 1, \forall k \in \mathcal{K},\tag{6h}$$

$$p_k \ge 0, \forall k \in \mathcal{K},$$

$$p_{k} \geq 0, \forall k \in \mathcal{K},$$

$$\Delta \geq 0, \forall k \in \mathcal{K},$$

$$(6i)$$

$$(6i)$$

$$(6i)$$

$$(6j)$$

$$(6i)$$

$$(6i)$$

$$(6i)$$

$$(6i)$$

$$(6i)$$

$$(6i)$$

Luis F. Abanto-Leon

Technical University of Darmstadt

Motivation 0000	System Model	Problem Formulation O	Proposed Solution	Simulation Results	Conclu: 00	
Propo	sed Solut	ion			13/	26
	$\mathcal{P}_1:_{\{\mathbf{w}_k\}_{k=1}^K}$	$\max_{\substack{1, {\mathbf{f}_k}_{k=1}^K, {\{\mathbf{v}_k\}_{k=1}^K}}$	$\sum_k \gamma_k$		(7a)	
		s.t.	$\left[\mathbf{F} ight]_{q,r}\in\mathcal{F},$ of	$q \in \mathcal{Q}, r \in \mathcal{R},$	(7b)	
			$\left[\mathbf{w}_{k}\right]_{n}\in\mathcal{W},$	$n \in \mathcal{N}, \forall k \in \mathcal{K},$	(7c)	
			$\ \mathbf{v}_k\ _2^2 = 1,$	$\forall k \in \mathcal{K}.$	(7d)	
	$\mathcal{P}_2: egin{array}{c} 1 \ \{p_k\} \end{array}$	$\max_{\substack{K\\k=1}},\mathbf{m},\Delta$	$\sum_k \tilde{\gamma}_k + \gamma_k - C\Delta$		(8a)	
		s.t.	$ \tilde{\gamma}_k - \gamma_{\min} \leq \Delta, \forall k$	$k \in \mathcal{K},$	(8b)	
			$\tilde{\gamma}_1 \geq \tilde{\gamma}_2 \geq \ldots \geq \tilde{\gamma}_K$	$\gamma \geq \tilde{\gamma}_1,$	(8c)	
			$\ \mathbf{Fm}\ _2^2 / \sum_k p_k \ \mathbf{F}\ _2^2$	$\mathbf{v}_k \ _2^2 \ge \beta,$	(8d)	
			$\ \mathbf{Fm}\ _2^2 + \sum_k p_k \ \mathbf{H}\ \ _2^2 + \sum_k p_k \ \mathbf{H}\ \ _2^2 + \sum_k p_k \ \mathbf{H}\ \ _2^2 + \sum_k p_k \ $	$\mathbf{F}\mathbf{v}_k\ _2^2 \le P_{\mathrm{tx}},$	(8e)	
			$p_k \ge 0, \forall k \in \mathcal{K},$		(8f)	TECHNISCHE
			$\Delta \geq 0.$	() 《웹 > 《 홈 > 《 홈	(8g)	

Luis F. Abanto-Leon

Technical University of Darmstadt

Motivation 0000	System Model 0000	Problem Formulation 0	Proposed Solution	Simulation Results	Conclusions 00

Optimization of
$$\{\mathbf{w}_k\}_{k=1}^K$$
, $\{\mathbf{f}_k\}_{k=1}^K$, $\{\mathbf{v}_k\}_{k=1}^K$ 14/ 26

$$\mathcal{P}_{1,1}: \max_{\{\mathbf{w}_k\}_{k=1}^K, \{\mathbf{f}_k\}_{k=1}^K} \sum_k p_k \left| \mathbf{w}_k^H \mathbf{H}_k \mathbf{F} \mathbf{v}_k \right|^2$$
(9a)
s.t.
$$[\mathbf{F}]_{m,k} \in \mathcal{F}, q \in \mathcal{Q}, r \in \mathcal{R}.$$
(9b)

$$\begin{bmatrix} \mathbf{F} \end{bmatrix}_{q,r} \in \mathcal{F}, q \in \mathcal{Q}, r \in \mathcal{K},$$
(9b)
$$\begin{bmatrix} \mathbf{w}_k \end{bmatrix}_n \in \mathcal{W}, n \in \mathcal{N}, \forall k \in \mathcal{K}.$$
(9c)

$$\mathcal{P}_{1,2}: \min_{\{\mathbf{v}_k\}_{k=1}^K} \qquad \sum_k \sum_{j \neq k} p_j \left| \mathbf{w}_k^H \mathbf{H}_k \mathbf{F} \mathbf{v}_j \right|^2 \qquad (10a)$$

s.t.
$$\|\mathbf{v}_k\|_2^2 = 1, \forall k \in \mathcal{K}. \qquad (10b)$$

TECHNISCHE UNIVERSITÄT DARMSTADT

æ

Luis F. Abanto-Leon

Technical University of Darmstadt

(a)

Motivation 0000	System Model 0000	Problem Formulation 0	Proposed Solution	Simulation Results 0000000	Conclusions
Optim	nization of	$\{p_k\}_{k=1}^K$, m	, Δ		15/ 26

$$\mathcal{P}_2: \max_{\{p_k\}_{k=1}^K, \mathbf{m}, \Delta} \qquad \sum_k ilde{\gamma}_k + \gamma_k - C\Delta$$

s.t.

$$\sum_{k} \tilde{\gamma}_{k} + \gamma_{k} - C\Delta$$
(11a)
$$|\tilde{\gamma}_{k} - \gamma_{\min}| \leq \Delta, \forall k \in \mathcal{K},$$
(11b)

$$\tilde{\gamma}_1 \ge \tilde{\gamma}_2 \ge \ldots \ge \tilde{\gamma}_K \ge \tilde{\gamma}_1,$$
(11c)

$$\|\mathbf{Fm}\|_{2}^{2} / \sum_{k} p_{k} \|\mathbf{Fv}_{k}\|_{2}^{2} \ge \beta,$$
 (11d)

$$\|\mathbf{Fm}\|_{2}^{2} + \sum_{k} p_{k} \|\mathbf{Fv}_{k}\|_{2}^{2} \le P_{\text{tx}},$$
 (11e)

$$p_k \ge 0, \forall k \in \mathcal{K},\tag{11f}$$

$$\Delta \ge 0. \tag{11g}$$

Luis F. Abanto-Leon

Technical University of Darmstadt

RMSTAD

Motivation 0000	System Model 0000	Problem Formulation 0	Proposed Solution 0000●0	Simulation Results	Conclusions
Optim	ization of	$\{p_k\}_{k=1}^K$, m,	Δ		16/ 26

$$\tilde{\mathcal{P}}_{2}:\max_{\{p_{k}\}_{k=1}^{K},\{\mu_{k}\}_{k=1}^{K},\{\upsilon_{k}\}_{k=1}^{K},\mathbf{m},\boldsymbol{\Delta}}$$

$$\sum_{k} \mu_{k} + v_{k} - C\Delta \tag{12a}$$

$$\left|\mathbf{h}_{k}^{\text{eff}}\mathbf{m}\right|^{2} / \left(p_{k} \left|g_{k}\right|^{2} + \sigma^{2}\right) \geq \mu_{k}, \forall k \in \mathcal{K}, \quad (12b)$$

$$p_k \left| g_k \right|^2 / \sigma^2 \ge v_k, \forall k \in \mathcal{K}, \tag{12c}$$

$$\|\mathbf{Fm}\|_2^2 / \sum_k p_k \|\mathbf{Fv}_k\|_2^2 \ge \beta,$$
(12d)

$$\|\mathbf{Fm}\|_{2}^{2} + \sum_{k} p_{k} \|\mathbf{Fv}_{k}\|_{2}^{2} \le P_{tx},$$
 (12e)

$$\mu_1 \ge \mu_2 \ge \ldots \ge \mu_K \ge \mu_1, \tag{12f}$$

$$\mu_k \le \gamma_{\min} + \Delta, \forall k \in \mathcal{K}, \tag{12g}$$

$$\mu_k \ge \gamma_{\min} - \Delta, \forall k \in \mathcal{K},$$
(12h)

$$v_k \ge 0, \forall k \in \mathcal{K},$$
 (12i)

$$p_k \ge 0, \forall k \in K$$
, (12j)

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$\Delta \ge 0,$$
 (12k)

< ≣⇒ Technical University of Darmstadt

2

TECHNISCHE UNIVERSITAT DARMSTADT

Luis F. Abanto-Leon

Motivation 0000	System Model	O O	Proposed Solution	Simulation Results	Conc 00	lusions
Ontim	ization of	$\{n_k\}_{i=1}^K$ m	Λ		17	/ 26
opun		$(P \kappa)_{k=1}$, m	, —			/ 20
	$\widetilde{\mathcal{P}}_{2}^{(t)}:\max_{\mathbf{m},\mathbf{p},\boldsymbol{\mu},\mathbf{v}}$	$1^T \boldsymbol{\mu} + 1$	${}^{T}\boldsymbol{v}-C\Delta$		(13a)	
	s.t.	2Re{dia	$g(\mathbf{Ap}^{(t)} + \mathbf{d})(\mathbf{I} \otimes \mathbf{m})$	$^{(t)H}$ $\mathbf{C}(1\otimes\mathbf{m})$ $\Big\}$		
		$-\operatorname{diag}($	$\mathbf{Ap} + \mathbf{d} (\mathbf{I} \otimes \mathbf{m}^{(t)}^H)$	$\mathbf{C}(1\otimes\mathbf{m}^{(t)})-$		
		$\operatorname{diag}(\mathbf{Ap}$	$(t) + \mathbf{d}$ diag $(\mathbf{Ap}^{(t)} + \mathbf{d})$	$+\mathbf{d}m{\mu} \succcurlyeq 0,$	(13b)	
		$\left(\mathbf{A}\odot\left(\mathrm{d}\right. ight)$	$\operatorname{iag}(\mathbf{d}))^{-1} \mathbf{p} \succcurlyeq \boldsymbol{v},$		(13c)	
		$2\mathfrak{Re}\Big\{(\mathbf{c}^T$	$\mathbf{p}^{(t)}\mathbf{m}^{(t)H}\mathbf{F}^{H}\mathbf{F}\mathbf{m}$	}-		
		$\mathbf{c}^T \mathbf{p} \mathbf{m}^{(t)}$	$^{)}{}^{H}\mathbf{F}^{H}\mathbf{Fm}^{(t)} - (\mathbf{c}^{T}\mathbf{p})$	$(t))^2 \beta \ge 0,$	(13d)	
		$\ \mathbf{Fm}\ _2^2$	$+\sum_{k} p_k \ \mathbf{F}\mathbf{v}_k\ _2^2 \le H$	$\sigma_{\rm tx},$	(13e)	
		$\left(\mathbf{I}-\widetilde{\mathbf{I}} ight) ,$	$\mu \succcurlyeq 0,$		(13f)	
		$\mu \preccurlyeq (\gamma_{\rm m}$	$_{in} + \Delta$) 1,		(13g)	
		$\boldsymbol{\mu} \succcurlyeq (\gamma_{\mathrm{m}}$	$_{in} - \Delta$) 1,		(13h)	
		$oldsymbol{v} \succcurlyeq oldsymbol{0},$			(13i)	
		$\mathbf{p} \succcurlyeq 0,$			(13j)	TECHNIS
		$\Delta \ge 0.$	4 5		(13k)	
Luis F. Abanto-	Leon			Technical Universi	r ≓ tv of Dar	mstadt
				Contract of the cross		

Motivation	System Model	Problem Formulation	Proposed Solution	Simulation Results	Conclusions
				000000	

Simulation Results

Table: Simulation parameters

Description	Symbol	Value	Units
Number of users	K	6	-
Number of transmit antennas	$N_{\rm tx}$	64	-
Number of receive antennas	$N_{\rm rx}$	4	-
Number of RF chains (at the hybrid precoder)	$N_{ m tx}^{ m RF}$	6	-
Number of phase shifts at the precoder	$L_{\rm tx}$	32	-
Number of phase shifts at the combiner	$L_{\rm rx}$	4	-
Multicast QoS requirement	$\gamma_{ m min}$	5	dB

Luis F. Abanto-Leon

Technical University of Darmstadt

Image: Image:

Simulation Results - Spectral Efficiency

19/26

Motivation 0000	System Model 0000	Problem Formulation 0	Proposed Solution	Simulation Results	Conclusions 00

Simulation Results - Spectral Efficiency

20/26

Luis F. Abanto-Leon

Technical University of Darmstadt

Simulation Results - Multicast Fairness

21/26

Motivation	System Model	Problem Formulation	Proposed Solution	Simulation Results	Conclusions
				0000000	

Simulation Results - BER

Luis F. Abanto-Leon

Technical University of Darmstadt

Simulation Results - Multicast BER

23/26

Luis F. Abanto-Leon

Technical University of Darmstadt

Motivation 0000	System Model 0000	Problem Formulation 0	Proposed Solution	Simulation Results	Conclusions 00

Simulation Results - Unicast BER

24/26

Technical University of Darmstadt

INNERSITA

Motivation 0000	System Model 0000	Problem Formulation 0	Proposed Solution	Simulation Results	Conclusions ●0
Conclusions					25/26

- We investigated the joint optimization of hybrid precoding, fairness, and power splitting in NOMA-LDM superimposed transmissions for industrial IoT scenarios.
- We proposed two solutions: one of them regarded as the superposition of two distinct precoders with different spatial and power signatures. The second approach is designed as a purely power-domain NOMA scheme.
- Through simulations we show that both proposed schemes, PLDM-1 and PLDM-2, are capable of providing remarkable fairness and high BER, which is relevant for the dissemination of critical control messages in this kind of scenarios.

System	

Questions

Problem Formu

Proposed Soluti

Simulation Resu 0000000 Conclusions

26/26

Email: l.f.abanto@ieee.org Website: www.luis-f-abanto-leon.com

This work has been funded by the Deutsche Forschungsgemeinschaft (DFG) within the B5G-Cell project as part of the SFB 1053 MAKI.

Luis F. Abanto-Leon

Technical University of Darmstadt