Learning-based Max-Min Fair Hybrid Precoding for mmWave Multicasting

Luis F. Abanto-Leon

Co-author: Gek Hong (Allyson) Sim

Department of Computer Science Technical University of Darmstadt

IEEE International Conference on Communications (ICC 2020) WC5: Machine Learning I (3rd Paper)

・ロト ・日子・ ・ヨト

SQA

æ

Motivation 00	System Model 0000	Problem Formulation 0	Proposed Solution	Simulation Results 000000	Conclusions 00
-					

Contents

- 1 Motivation
- 2 System Model
- **3** Problem Formulation
- **4** Proposed Solution
- **5** Simulation Results
- 6 Conclusions

Luis F. Abanto-Leon

Motivation ●0	System Model 0000	Problem Formulation 0	Proposed Solution	Simulation Results 000000	Conclusions
Motiva	ation				3/ 25

 Multicast beamforming with fully-digital precoders has been widely studied in the literature.

Luis F. Abanto-Leon

Motivation ●0	System Model 0000	Problem Formulation 0	Proposed Solution	Simulation Results	Conclusions
Motiva	ation				3/ 25

- Multicast beamforming with fully-digital precoders has been widely studied in the literature.
- However, the benefits and challenges with hybrid precoders require additional study.

Luis F. Abanto-Leon

Motivation ●0	System Model 0000	Problem Formulation 0	Proposed Solution	Simulation Results	Conclusions
Motiva	ation				3/ 25

- Multicast beamforming with fully-digital precoders has been widely studied in the literature.
- However, the benefits and challenges with hybrid precoders require additional study.
- We investigate the joint design of hybrid precoding and analog combining for max-min fairness single-group multicasting in millimeter-wave systems. We propose LB-GDM, a learning-based approach that leverages (i) gradient descent with momentum and (ii) alternating optimization.

Motivation ○●	System Model 0000	Problem Formulation 0	Proposed Solution	Simulation Results	Conclusions
Matin	ation				

- Features of the proposed scheme LB-GDM
 - Has low complexity [compared to SDR]
 - Leverages alternating optimization [several parameters]
 - Is based on learning with gradient descent with momentum
- Our proposed design does not require:
 - Code-books
 - Solution with a fully-digital precoder.

4/25

IVIOLIVATION

System Model

Single-group Multicasting

0000

NIVERSITA

Motivation	System Model	Problem Formulation	Proposed Solution	Conclusions
	0000			

Hybrid Precoder

6/25

Figure: Hybrid and fully-digital precoders

Technical University of Darmstadt

Luis F. Abanto-Leon

Motivation 00	System Model ○○●○	Problem Formulation 0	Proposed Solution	Simulation Results	Conclusions 00

System Model

The downlink signal is

$$\mathbf{x} = \mathbf{F}\mathbf{m}s\tag{1}$$

The received signal by user $k \in \mathcal{K}$ is

$$y_k = \underbrace{\mathbf{w}_k^H \mathbf{H}_k \mathbf{x}}_{\text{multicast signal}} + \underbrace{\mathbf{w}_k^H \mathbf{n}_k}_{\text{noise}}, \tag{2}$$

 \mathbf{w}_k : combiner of the k-th user \mathbf{F} : analog precoder \mathbf{m} : digital precoder \mathbf{H}_k : channel between the gNodeB and the k-th user K: number of users $\mathcal{K} = \{1, \dots, K\}$: set of users s: multicast symbol

Luis F. Abanto-Leon

Learning-based Max-Min Fair Hybrid Precoding for mmWave Multicasting

Technical University of Darmstadt

Motivation 00	System Model 000●	Problem Formulation 0	Proposed Solution	Simulation Results	Conclusions 00

System Model

8/25

The received signal by user $k \in \mathcal{K}$ is

$$y_k = \underbrace{\mathbf{w}_k^H \mathbf{H}_k \mathbf{Fms}}_{\text{multicast signal}} + \underbrace{\mathbf{w}_k^H \mathbf{n}_k}_{\text{noise}}, \tag{3}$$

The SNR at user k is

$$\gamma_k = \frac{\left|\mathbf{w}_k^H \mathbf{H}_k \mathbf{F} \mathbf{m}\right|^2}{\sigma^2 \left\|\mathbf{w}_k\right\|_2^2},\tag{4}$$

- \mathbf{w}_k : combiner of the k-th user
- \mathbf{F} : analog precoder
- m: digital precoder
- \mathbf{H}_k : channel between the gNodeB and the k-th user
- K: number of users

$$\mathcal{K} = \{1, \dots, K\}$$
: set of users

s: multicast symbol

Luis F. Abanto-Leon

Technical University of Darmstadt

Motivation	System Model	Problem Formulation	Proposed Solution	Conclusions
		•		

Problem Formulation

$$\mathcal{P}_{0}^{\mathsf{hyb}} : \max_{\mathbf{F}, \mathbf{m}, \{\mathbf{w}_{k}\}_{k=1}^{K}} \min_{k \in \mathcal{K}} \frac{\left|\mathbf{w}_{k}^{H} \mathbf{H}_{k} \mathbf{Fm}\right|^{2}}{\sigma^{2} \left\|\mathbf{w}_{k}\right\|_{2}^{2}}$$
(5a)
s.t.
$$\|\mathbf{Fm}\|_{2}^{2} = P_{\mathsf{tx}}^{\max},$$
(5b)
$$[\mathbf{F}]_{q,r} \in \mathcal{F}, q \in \mathcal{Q}, r \in \mathcal{R},$$
(5c)
$$\|\mathbf{w}_{k}\|_{2}^{2} = P_{\mathsf{rx}}^{\max}, k \in \mathcal{K},$$
(5d)
$$[\mathbf{w}_{k}]_{l} \in \mathcal{W}, l \in \mathcal{L}, \forall k \in \mathcal{K},$$
(5e)

$$\begin{split} \mathcal{F} &= \left\{ \sqrt{\delta_{\mathrm{tx}}}, \ldots, \sqrt{\delta_{\mathrm{tx}}} e^{j \frac{2\pi (L_{\mathrm{tx}}-1)}{L_{\mathrm{tx}}}} \right\}: \text{ allowed phase shifts at the precoder} \\ \mathcal{W} &= \left\{ \sqrt{\delta_{\mathrm{rx}}}, \ldots, \sqrt{\delta_{\mathrm{rx}}} e^{j \frac{2\pi (L_{\mathrm{rx}}-1)}{L_{\mathrm{rx}}}} \right\}: \text{ allowed phase shifts at the combiners} \\ L_{\mathrm{tx}}: \text{ number of phase shifts at the precoder} \\ L_{\mathrm{rx}}: \text{ number of phase shifts at the combiners} \end{split}$$

Luis F. Abanto-Leon

Motivation	System Model	Problem Formulation	Proposed Solution	Simulation Results	Conclusions
			0000000		

Proposed Solution

$$\min \qquad \frac{\left|\mathbf{w}_{k}^{H}\mathbf{H}_{k}\mathbf{Fm}\right|^{2}}{(6a)}$$

$$\mathcal{P}_{1}^{\mathsf{hyb}} : \max_{\mathbf{F}} \min_{k \in \mathcal{K}} \qquad \frac{|\mathbf{w}_{k} \mathbf{\Pi}_{k} \mathbf{F} \mathbf{\Pi}|}{\sigma^{2} P_{\mathsf{rx}}^{\mathsf{max}}}$$
(6a)
s.t.
$$\|\mathbf{Fm}\|_{2}^{2} = P_{\mathsf{tx}}^{\mathsf{max}},$$
(6b)

$$\|\mathbf{Fm}\|_2^2 = P_{\mathrm{tx}}^{\mathrm{max}},\tag{6b}$$

$$\left[\mathbf{F}\right]_{q,r} \in \mathcal{F}, q \in \mathcal{Q}, r \in \mathcal{R}.$$
 (6c)

$$\mathcal{P}_{2}^{\mathsf{hyb}} : \max_{\mathbf{m}} \min_{k \in \mathcal{K}} \qquad \left| \mathbf{w}_{k}^{H} \mathbf{H}_{k} \mathbf{Fm} \right|^{2}$$
(7a)

$$\left\|\mathbf{Fm}\right\|_{2}^{2} = P_{\mathrm{tx}}^{\mathrm{max}}.$$
 (7b)

$$\mathcal{P}_{3}^{\mathsf{hyb}} : \max_{\{\mathbf{w}_{k}\}_{k=1}^{K}} \min_{k \in \mathcal{K}} \qquad \frac{\left|\mathbf{w}_{k}^{H}\mathbf{H}_{k}\mathbf{Fm}\right|^{2}}{\sigma^{2} \left\|\mathbf{w}_{k}\right\|_{2}^{2}} \qquad (8a)$$

s.t.
$$[\mathbf{w}_{k}]_{l} \in \mathcal{W}, l \in \mathcal{L}, \forall k \in \mathcal{K}. \qquad (8b)$$

Luis F. Abanto-Leon

Technical University of Darmstadt

TECHNISCHE UNIVERSITAT DARMSTADT

Learning-based Max-Min Fair Hybrid Precoding for mmWave Multicasting

s.t.

Motivation	System Model	Problem Formulation	Proposed Solution	Conclusions
			0000000	

Optimization of the Analog Precoder ${f F}$

11/25

$$\mathcal{P}_{1}^{\mathsf{hyb}} : \max_{\mathbf{F}} \min_{k \in \mathcal{K}} \qquad \frac{\left| \mathbf{w}_{k}^{H} \mathbf{H}_{k} \mathbf{Fm} \right|^{2}}{\sigma^{2} P_{\mathrm{rx}}^{\max}} \tag{9a}$$
s.t.
$$\| \mathbf{Fm} \|_{2}^{2} = P_{\mathrm{tx}}^{\max}, \tag{9b}$$

$$[\mathbf{F}]_{q,r} \in \mathcal{F}, q \in \mathcal{Q}, r \in \mathcal{R}. \tag{9c}$$

0

We equivalently recast $\mathcal{P}_1^{\mathsf{hyb}}$ as $\overline{\mathcal{P}}_1^{\mathsf{hyb}}$

$$\overline{\mathcal{P}}_{1}^{\mathsf{hyb}} : \max_{\mathbf{F}} \min_{k \in \mathcal{K}} \qquad \frac{\mathbf{m}^{H} \mathbf{F}^{H} \mathbf{H}_{k}^{H} \mathbf{w}_{k} \mathbf{w}_{k}^{H} \mathbf{H}_{k} \mathbf{F} \mathbf{m}}{\mathbf{m}^{H} \mathbf{F}^{H} \mathbf{F} \mathbf{m}} \qquad (10a)$$
s.t.
$$[\mathbf{F}]_{q,r} \in \mathcal{F}, q \in \mathcal{Q}, r \in \mathcal{R}. \qquad (10b)$$

Luis F. Abanto-Leon

Technical University of Darmstadt

INNERSITA

Motivation 00	System Model 0000	Problem Formulation 0	Proposed Solution	Simulation Results 000000	Conclusions

Optimization of the Analog Precoder F

12/25

Instead of approaching (10), we propose to solve the surrogate problem (11), which consists of a weighted sum of all $\tau_k^F = \frac{\mathbf{m}^H \mathbf{F}^H \mathbf{H}_k^H \mathbf{w}_k \mathbf{w}_k^H \mathbf{H}_k \mathbf{Fm}}{\mathbf{m}^H \mathbf{F}^H \mathbf{Fm}}, \text{ as shown in (11)}$

$$\widehat{\mathcal{P}}_{1}^{\mathsf{hyb}} : \max_{\mathbf{F}} \qquad \sum_{k=1}^{K} c_{k} \frac{\mathbf{m}^{H} \mathbf{F}^{H} \mathbf{H}_{k}^{H} \mathbf{w}_{k} \mathbf{w}_{k}^{H} \mathbf{H}_{k} \mathbf{Fm}}{\mathbf{m}^{H} \mathbf{F}^{H} \mathbf{Fm}} \qquad (11a)$$
s.t. $[\mathbf{F}]_{q,r} \in \mathcal{F}, q \in \mathcal{Q}, r \in \mathcal{R}, \qquad (11b)$

where $c_k \geq 0$ denotes the k-th weighting factor

・ロシィアシュミシュミン ヨックで Technical University of Darmstadt

Luis F. Abanto-Leon

Motivation 00	System Model 0000	Problem Formulation 0	Proposed Solution	Simulation Results	Conclusions

Optimization of the Analog Precoder F

Notice that

$$\tau_{k}^{F} \leq \lambda_{\max} \left(\left(\mathbf{F}^{H} \mathbf{F} \right)^{-1} \mathbf{F}^{H} \mathbf{H}_{k}^{H} \mathbf{w}_{k} \mathbf{w}_{k}^{H} \mathbf{H}_{k} \mathbf{F} \right)$$
$$= \underbrace{\mathbf{w}_{k}^{H} \mathbf{H}_{k} \mathbf{F} \left(\mathbf{F}^{H} \mathbf{F} \right)^{-1} \mathbf{F}^{H} \mathbf{H}_{k}^{H} \mathbf{w}_{k}}_{J_{k}^{F}}, \tag{12}$$

where $\lambda_{\max}(\cdot)$ extracts the maximum eigenvalue. Upon replacing τ_k^F in (11) by its upper bound J_k^F , the problem collapses to

$$\widetilde{\mathcal{P}}_{1}^{\mathsf{hyb}} : \max_{\mathbf{F}} \qquad \sum_{k=1}^{K} c_{k} \mathbf{w}_{k}^{H} \mathbf{H}_{k} \mathbf{F} \left(\mathbf{F}^{H} \mathbf{F} \right)^{-1} \mathbf{F}^{H} \mathbf{H}_{k}^{H} \mathbf{w}_{k}, \qquad (13a)$$

s.t. $[\mathbf{F}]_{q,r} \in \mathcal{F}, q \in \mathcal{Q}, r \in \mathcal{R}.$ $(13b)$

Luis F. Abanto-Leon

Technical University of Darmstadt

13/25

Motivation	System Model	Problem Formulation	Proposed Solution	Conclusions
			00000000	

Optimization of the Analog Precoder F

14/25

Algorithm 1: Optimization of the analog precoder

Input: The precoders $\mathbf{F}^{(t-1)}$, $\mathbf{m}^{(t-1)}$ and receive combiners $\left\{\mathbf{w}_{k}^{(t-1)}\right\}_{k=1}^{K}$ **Output:** The analog precoder $\mathbf{F}^{(t)}$ **Execute:**

1: Calculate the weights $c_k^{(t)}, \forall k \in \mathcal{K}$.

2: Compute $\nabla J^F = \sum_{k=1}^{K} c_k^{(t)} \nabla_{\mathbf{F}} J_k^F / \left\| \nabla_{\mathbf{F}} J_k^F \right\|_{\mathbf{F}}$.

3: Compute the normalized gradient $\nabla \tilde{J}_{F}^{(t)} = \nabla J^{F} / \left\| \nabla J^{F} \right\|_{\mathrm{F}}$.

4: Compute $\mathbf{F}^{(t)} = \mathbf{F}^{(t-1)} + \rho_F \mathbf{F}^{(t-1)}_{\text{best}} + \alpha_F \nabla \tilde{J}_F^{(t)}$.

5: Project
$$\left[\mathbf{F}^{(t)}\right]_{q,r} \leftarrow \Pi_{\mathcal{F}} \left[\mathbf{F}^{(t)}\right]_{q,r}$$
 onto \mathcal{F} to satisfy (8b).

Luis F. Abanto-Leon

Technical University of Darmstadt

Motivation	System Model	Problem Formulation	Proposed Solution	Simulation Results	Conclusions
	0000		00000000	000000	

Optimization of the Digital Precoder ${f m}$

15/25

▲ 同 ▶ < ∃ ▶</p>

Technical University of Darmstadt

Algorithm 2: Optimization of the digital precoder

Input: The precoders $\mathbf{F}^{(t)}$, $\mathbf{m}^{(t-1)}$ and receive combiners $\left\{\mathbf{w}_{k}^{(t-1)}\right\}_{k=1}^{K}$ **Output:** The digital precoder $\mathbf{m}^{(t)}$

Execute:

1: Calculate the weights
$$d_k^{(t)}, \forall k \in \mathcal{K}$$
.

2: Compute
$$\nabla J^M = \sum_{k=1}^K d_k^{(t)} \nabla_{\mathbf{m}} J_k^M / \left\| \nabla_{\mathbf{m}} J_k^M \right\|_2$$
.

3: Compute the normalized gradient
$$\nabla \tilde{J}_M^{(t)} = \nabla J^M / \left\| \nabla J^M \right\|_2$$
.

4: Compute
$$\mathbf{m}^{(t)} = \mathbf{m}^{(t-1)} + \rho_M \mathbf{m}_{\text{pest}}^{(t-1)} + \alpha_M \nabla \tilde{J}_M^{(t)}$$
.

5: Normalize
$$\mathbf{m}^{(t)} \leftarrow \sqrt{P_{\mathrm{tx}}^{\mathrm{max}}} \mathbf{m}^{(t)} / \left\| \mathbf{F} \mathbf{m}^{(t)} \right\|_{2}$$
.

Luis F. Abanto-Leon

Motivation	System Model	Problem Formulation	Proposed Solution	Simulation Results	Conclusions
00	0000	0	000000●0		00

Optimization of the Analog Combiner \mathbf{w}_k

16/25

Algorithm 3: Optimization of the *k*-th combiner

Input: The precoders $\mathbf{F}^{(t)}$, $\mathbf{m}^{(t)}$ and the receive combiner $\mathbf{w}_{k}^{(t-1)}$ Output: The receive combiner $\mathbf{w}_{k}^{(t)}$ Execute: 1: Compute $\nabla_{\mathbf{w}_{k}} J_{k}^{W}$.

2: Compute
$$\nabla_{\mathbf{w}_k} J_W^{(t)} = \nabla_{\mathbf{w}_k} J_k^{(t)} / \|\nabla_{\mathbf{w}_k} J_k^{(t)}\|_2$$
.
3: Compute $\mathbf{w}_k^{(t)} = \mathbf{w}_k^{(t-1)} + \rho_W \mathbf{w}_{\text{best }k}^{(t-1)} + \alpha_W \nabla_{\mathbf{w}_k} \tilde{J}_W^{(t)}$.

4: Project
$$\begin{bmatrix} \mathbf{w}_{k}^{(t)} \end{bmatrix}_{l} \leftarrow \Pi_{\mathcal{W}} \begin{bmatrix} \mathbf{w}_{k}^{(t)} \end{bmatrix}_{l}$$
 onto $\mathcal{W}, \forall l \in \mathcal{L}$ to satisfy (12b).

Contraction Cont

Luis F. Abanto-Leon

Motivation	System Model	Problem Formulation	Proposed Solution	Conclusions
			0000000	

Optimization Algorithm

$\begin{array}{llllllllllllllllllllllllllllllllllll$	
1: Assign $\left[\mathbf{F}^{(0)}\right]_{q,r} \leftarrow \delta, q = \{1, \dots, N_{\mathrm{tx}}\}, r \leftarrow \mod\left(q, N_{\mathrm{tx}}^{\mathrm{RF}}\right) + 1,$	
$\mathbf{m}^{(0)} \leftarrow \begin{bmatrix} 1 \ 0_{1 \times (N_{\text{tw}}^{\text{RF}} - 1)} \end{bmatrix}^T, \mathbf{w}_k^{(0)} \leftarrow \begin{bmatrix} 1 \ 0_{1 \times (N_{\text{tx}} - 1)} \end{bmatrix}^T, \forall k \in \mathcal{K}.$	
2: Assign $\mathbf{F}_{\text{best}} \leftarrow 0$, $\mathbf{m}_{\text{best}} \leftarrow 0$ and $\{\mathbf{w}_{\text{best},k}\} \leftarrow 0$.	
3: Assign $\alpha_F \leftarrow \alpha_{F_0}, \alpha_M \leftarrow \alpha_{M_0}, \alpha_W \leftarrow \alpha_{W_0}$.	
4: Assign $t \leftarrow 0, \gamma_T \leftarrow 0$.	
Execute: $\sum_{i=1}^{N} \int d\mathbf{r} (exploration phase)$	
6. for $i_{xyy} = 1, \dots, N_{xyy}$, do (exploration phase)	
7: Compute $\mathbf{F}^{(t)}$, $\mathbf{m}^{(t)}$, $\left\{\mathbf{w}_{k}^{(t)}\right\}_{k=1}^{K}$ via Algorithms 1, 2, 3.	
8: Find the minimum SNR, γ_{min} , among all users.	
9: if $\gamma_{\min} \geq \gamma_T$	
10: Assign $\mathbf{F}_{opt} \leftarrow \mathbf{F}^{(t)}, \mathbf{m}_{opt} \leftarrow \mathbf{m}^{(t)}, \{\mathbf{w}_{opt,k}\}_{k=1}^{K} \leftarrow \{\mathbf{w}_{k}^{(t)}\}_{k=1}^{K}$.	
11: Assign $\gamma_T \leftarrow \gamma_{\min}$.	
12: end if	
13: Update $\alpha_F \leftarrow 0.98 \ \alpha_F, \ \alpha_M \leftarrow 0.98 \ \alpha_M, \ \alpha_W \leftarrow 0.98 \ \alpha_W.$	
14: Increment $t \leftarrow t + 1$.	
15: end for	
16: Assign $\mathbf{F}_{\text{best}}^{(t)} \leftarrow \mathbf{F}_{\text{opt}}, \mathbf{m}_{\text{best}}^{(t)} \leftarrow \mathbf{m}_{\text{opt}}, \left\{ \mathbf{w}_{\text{best},k}^{(t)} \right\}_{k=1}^{K} \leftarrow \left\{ \mathbf{w}_{\text{opt},k} \right\}_{k=1}^{K}$.	
17: Randomize $\mathbf{F}^{(t)}$, $\mathbf{m}^{(t)}$ and $\left\{\mathbf{w}_{k}^{(t)}\right\}_{k=1}^{K}$ enforcing (3b) - (3f).	
18: Assign $\alpha_F \leftarrow \alpha_{F_0}, \alpha_M \leftarrow \alpha_{M_0}, \alpha_W \leftarrow \alpha_{W_0}$.	
19: end for	
	- C

Luis F. Abanto-Leon

Technical University of Darmstadt

Motivation 00	System Model 0000	Problem Formulation O	Proposed Solution	Simulation Results	Conclusions

Simulation Results - Scenario I

Goal: Evaluate the impact of exploration $(N_{\rm xpr})$ and exploitation $(N_{\rm xpt})$

Description	Symbol	Value	Units
Transmit power	P_{tx}^{max}	30	dBm
Receive power	P _{rx} ^{max}	10	dBm
Noise power	σ^2	30	dBm
Number of users	K	30	-
Number of transmit antennas	N_{tx}	15	-
Number of receive antennas	N_{rx}	2	-
Number of RF chains (at the hybrid precoder)	N_{tx}^{RF}	6	-
Number of phase shifts at the precoder	L_{tx}	8	-
Number of phase shifts at the combiner	L_{rx}	4	-
Number of exploration instances	N_{xpr}	100	-
Number of exploitation instances	$L_{\rm xpt}$	100	-
Momentum factor	$\rho_F = \rho_M = \rho_W$	0.90	-
Diminishing learning factor	$\alpha_F=\alpha_M=\alpha_W$	0.98	-

Table: Simulation parameters

Luis F. Abanto-Leon

Technical University of Darmstadt

Image: A mathematical states and a mathem

Motivation	System Model	Problem Formulation	Proposed Solution	Simulation Results	Conclusions
				00000	

Simulation Results - Scenario I

19/25

Figure: Impact of exploration (N_{xpr}) and exploitation (N_{xpt}) .

Luis F. Abanto-Leon

Technical University of Darmstadt

Motivation	System Model	Problem Formulation	Proposed Solution	Simulation Results	Conclusions
00	0000		00000000	000000	00

Simulation Results - Scenario II

Goal: Evaluate the impact of the number of antennas $N_{\rm tx}$ and $N_{\rm rx}$

Description	Symbol	Value	Units
Transmit power	P_{tx}^{max}	30	dBm
Receive power	$P_{\rm rx}^{\rm max}$	10	dBm
Noise power	σ^2	30	dBm
Number of users	K	50	-
Number of transmit antennas	N_{tx}	$\{8, 12, 16\}$	-
Number of receive antennas	N_{rx}	$\{1, 2, 3, 4, 5\}$	-
Number of RF chains (at the hybrid precoder)	N_{tx}^{RF}	2	-
Number of phase shifts at the precoder	L_{tx}	8	-
Number of phase shifts at the combiner	L_{rx}	4	-
Number of exploration instances	N_{xpr}	100	-
Number of exploitation instances	L_{xpt}	100	-
Momentum factor	$\rho_F = \rho_M = \rho_W$	0.90	-
Diminishing learning factor	$\alpha_F=\alpha_M=\alpha_W$	0.98	-

Table: Simulation parameters

Technical University of Darmstadt

Luis F. Abanto-Leon

Learning-based Max-Min Fair Hybrid Precoding for mmWave Multicasting

20/25

Motivation 00	System Model 0000	Problem Formulation 0	Proposed Solution	Simulation Results	Conclusions 00

Simulation Results - Scenario II

 $\left[\begin{array}{c} \left[\mathsf{H} \right] | N_{\mathrm{rx}} = 1 \end{array} \right] \left[\begin{array}{c} \left[\mathsf{H} \right] | N_{\mathrm{rx}} = 2 \end{array} \right] \left[\begin{array}{c} \left[\mathsf{H} \right] | N_{\mathrm{rx}} = 3 \end{array} \right] \left[\begin{array}{c} \left[\mathsf{H} \right] | N_{\mathrm{rx}} = 4 \end{array} \right] \left[\begin{array}{c} \left[\mathsf{H} \right] | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \left[\mathsf{H} \right] | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \left[\mathsf{H} \right] | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \left[\mathsf{H} \right] | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \left[\mathsf{H} \right] | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \left[\mathsf{H} \right] | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \left[\mathsf{H} \right] | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \left[\mathsf{H} \right] | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \left[\mathsf{H} \right] | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \left[\mathsf{H} \right] | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \left[\mathsf{H} \right] | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \left[\mathsf{H} \right] | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \left[\mathsf{H} \right] | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \left[\mathsf{H} \right] | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \left[\mathsf{H} \right] | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \left[\mathsf{H} \right] | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = 5 \end{array} \right] \left[\left[\begin{array}{c} \mathsf{H} | N_{\mathrm{rx}} = S \end{array} \right] \left[\left[\left[\begin{array}[\\[\\$ Minimum SNR 150SE [bps/Hz] 100 50 \overline{N}_{tx} = 16 =

Figure: Performance evaluation of LB–GDM for varying $N_{\rm tx}$ and $N_{\rm rx}$ in fully-digital (D) and hybrid (H) precoders.

21/25

Luis F. Abanto-Leon

Learning-based Max-Min Fair Hybrid Precoding for mmWave Multicasting

Technical University of Darmstadt

Motivation 00	System Model 0000	Problem Formulation 0	Proposed Solution	Simulation Results 0000●0	Conclusions

Simulation Results - Scenario III

22/25

Goal: Compare the performance with a SDR-based scheme

Table: Simulation parameters

Description	Symbol	Value	Units
Transmit power	P_{tx}^{\max}	30	dBm
Receive power	P_{yy}^{thax}	10	dBm
Noise power	σ^2	30	dBm
Number of users	K	$\{25, 50, 75, 100\}$	-
Number of transmit antennas	N_{tx}	20	-
Number of receive antennas	$N_{\rm rx}$	3	-
Number of RF chains (at the hybrid precoder)	N_{tr}^{RF}	6	-
Number of phase shifts at the precoder	L_{tx}^{tx}	8	-
Number of phase shifts at the combiner	$L_{\rm rx}$	4	-
Number of exploration instances	$N_{\rm xpr}$	120	-
Number of exploitation instances	$L_{\rm xpt}$	120	-
Momentum factor	$\rho_F = \rho_M = \rho_W$	0.90	-
Diminishing learning factor	$\alpha_F = \alpha_M = \alpha_W$	0.98	-
Number of randomizations (SDR-C)	N_{rand}	$\{1, 10, 50, 100, 500, 1000\}$	- 🏔

Luis F. Abanto-Leon

Technical University of Darmstadt

Simulation Results - Scenario III

23/25

Motivation 00	System Model 0000	Problem Formulation 0	Proposed Solution	Simulation Results	Conclusions ●0
Conclu	usions				24/25

- We investigated the design of fully-digital and hybrid precoders for single-group multicasting using a learning-based scheme, LB-GDM.
- Our proposed low-complexity LB-GDM uses only matrix multiplications / additions and low-dimensional matrix inversion operations.
- We compare the performance of precoders based on SDR-C and LB-GDM. The results show that LB-GDM attains substantial additional gain for both digital and hybrid precoders.
- We corroborate the importance of incorporating more receive antennas. We achieve 75.7% and 100% gains in terms of the minimum SNR by increasing the number of receive antennas from one to two.

Technical University of Darmstadt

System

Questions

Problem Formul

Proposed Solution

Simulation Resu

Conclusions

25/25

Email: l.f.abanto@ieee.org Website: www.luis-f-abanto-leon.com

This work has been funded by the Deutsche Forschungsgemeinschaft (DFG) within the B5G-Cell project as part of the SFB 1053 MAKI.

Luis F. Abanto-Leon